

Fast Random Walk with Restart: Algorithms and Applications

U Kang Dept. of CSE Seoul National University

- RWR for ranking in graphs: important problem with many real world applications
 - Web search, friend recommendation, product recommendation, ...
- BePI: state-of-the-art method for *exact* RWR
 Linear algebra + Graph theory + Real World Graph Analysis

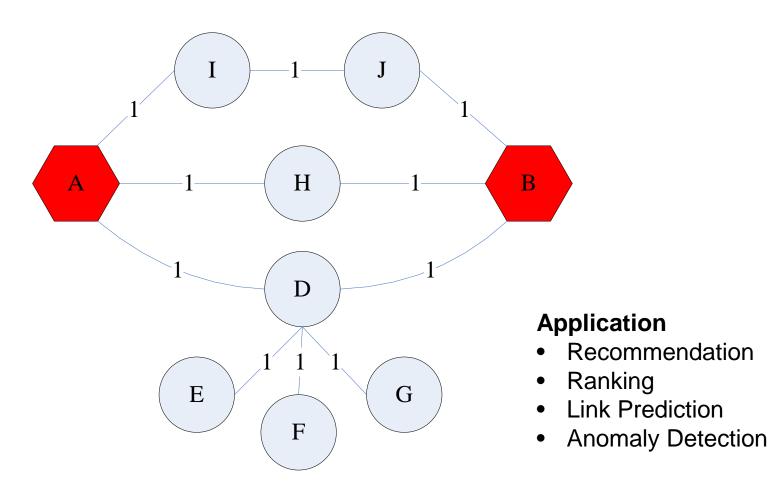
• TPA and OSP: those for *approximate* RWR

Outline

Random Walk with Restart (RWR) Fast Exact RWR

- □ Fast Approximate RWR
- **Conclusions**

Proximity on Graphs

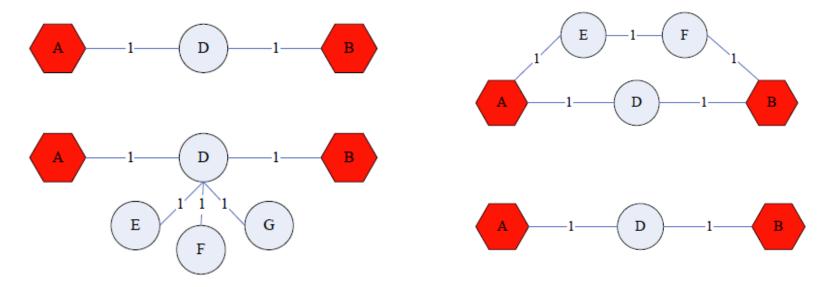


a.k.a.: Relevance, Closeness, 'Similarity'...

U Kang (SNU)

Good proximity measure?

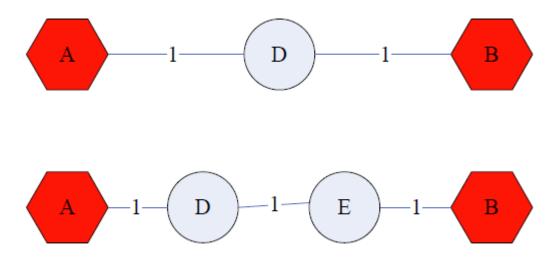
Shortest path is not good:



- No effect of degree-1 nodes (E, F, G)!
- Multi-faceted relationships

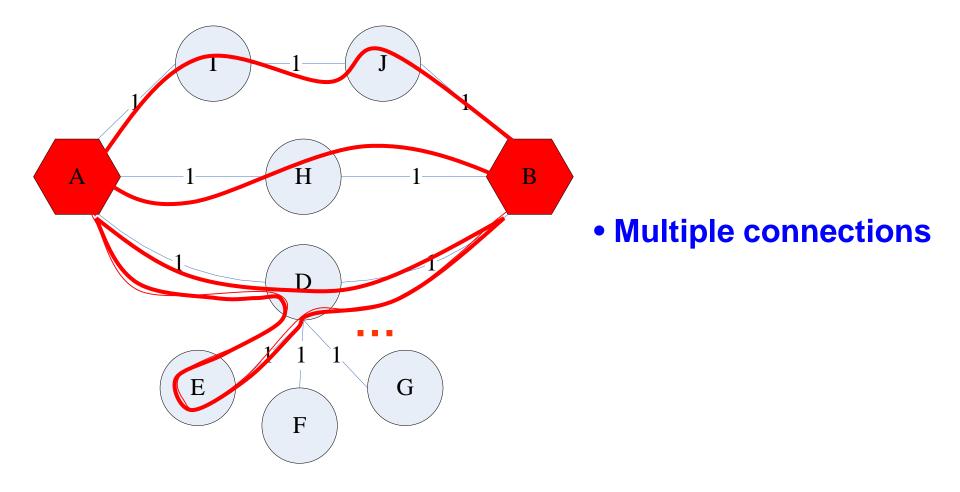
Good proximity measure?

Network flow is not good:

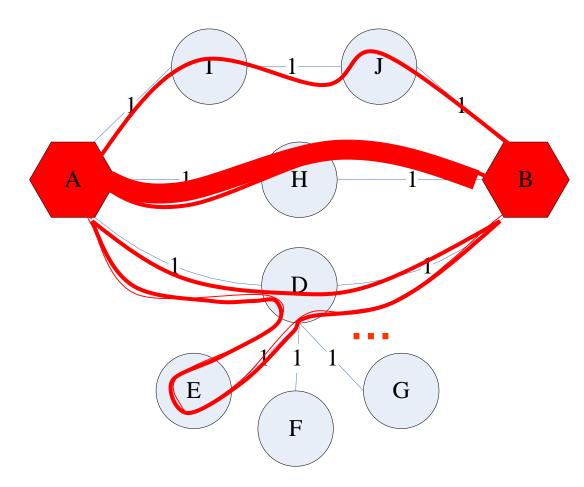


Does not punish long paths

What is good notion of proximity?



What is good notion of proximity?

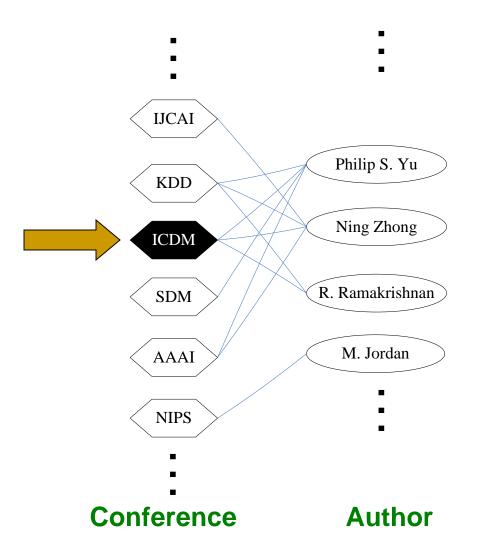


- Multiple connections
- Quality of connection
 - •Length, Degree,
 - Weight...

•Answer: RWR !

U Kang (SNU)

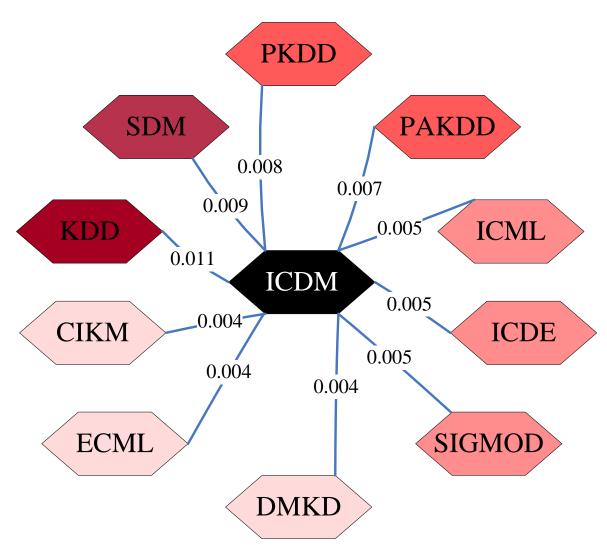
RWR: Example



Q: What is the most related conference to ICDM?

A: Random Walk With Restart from S={ICDM}

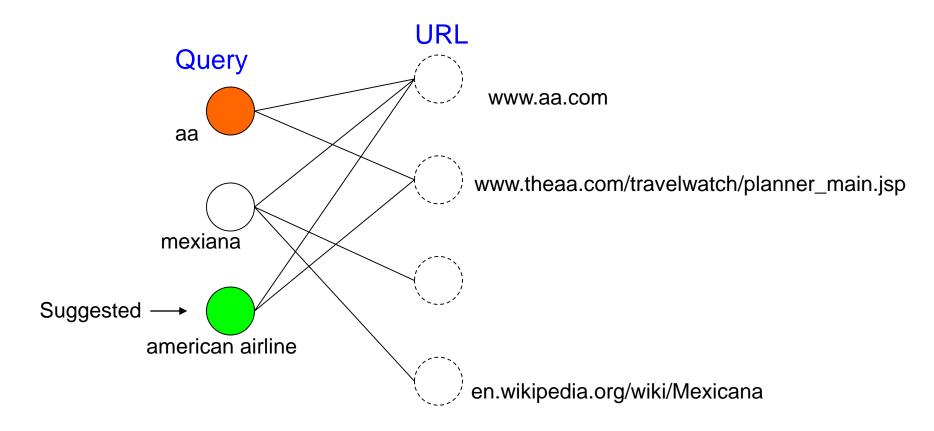
RWR: Example



U Kang (SNU)

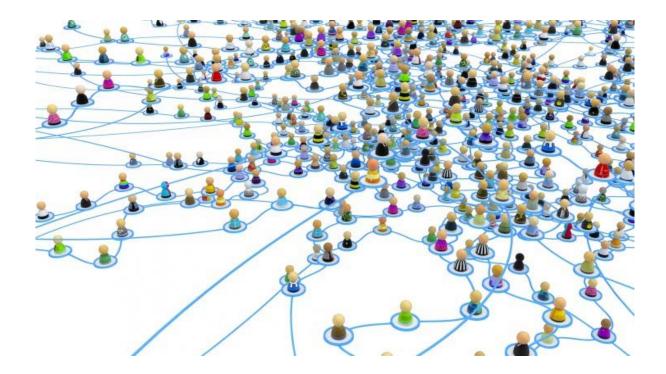
RWR: Applications

Web Search: Query Suggestion



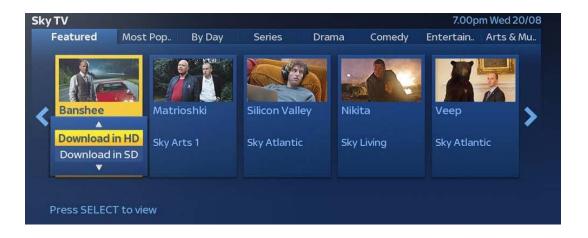
RWR: Applications

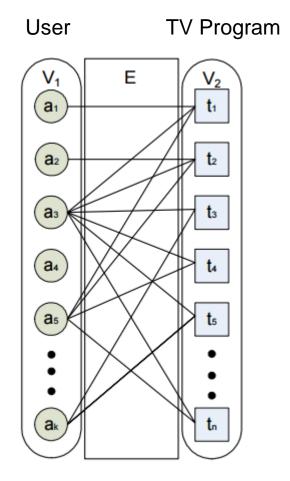
Friend Recommendation



RWR: Applications

TV Program Recommendation



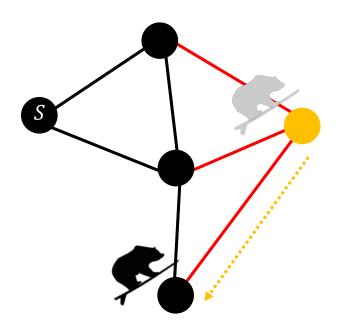


Random Walk with Restart (1)

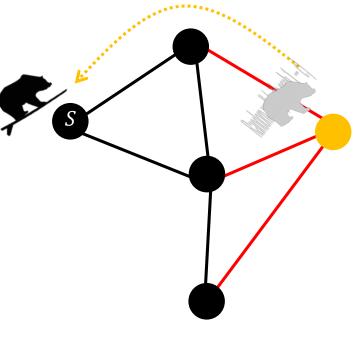
- Given a query node, compute proximities of other nodes to the query node
- A random surfer moves to one of its outgoing neighbor with prob. 1-c, and jumps to the query node with prob. c
 - After many moves, RWR score of a node is proportional to # of times the node is visited
- Also called Personalized PageRank
 - Similar to PageRank, but the random surfer jumps only to the query nodes

Random Walk with Restart (2)

RWR assumes a random surfer on a graph



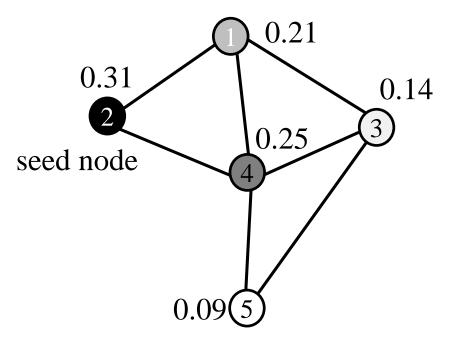
Random walk (with prob 1 - c)



Restart (with prob c)

Random Walk with Restart (3)

 RWR computes the stationary probability that the surfer stays at each node



Node	RWR Score (relevance with node 2)
1	0.21
2	0.31
3	0.14
4	0.25
5	0.09

Restarting probability c = 0.2

Conclusion: RWR

- Random Walk with Restart
 - Personalized PageRank to compute node proximity
- Widely used for measuring proximities of nodes in graphs
 - Applications: Web search, friend recommendation, product recommendation, ...

Outline

- Random Walk with Restart (RWR)
- Þ 🗖 Fast Exact RWR
 - □ Fast Approximate RWR
 - **Conclusions**

- I will describe two state-of-the-art exact RWR algorithms
 - □ BEAR (SIGMOD 2015)
 - □ BePI (SIGMOD 2017)

BEAR: Block Elimination Approach for Random Walk With Restart on Large Graphs (SIGMOD 2015)

http://datalab.snu.ac.kr/bear

Introduction

Random Walk with Restart (RWR)

- **Goal:** measures the relevance between two nodes
- **Properties**: accounts for the global network structure and the multi-faceted relationship between nodes
- Applications: ranking, community detection, link prediction, and anomaly detection
- Question: How can we compute RWR on large graphs fast, efficiently, and accurately?

Problem Definition

- **Given**: a graph *G*, a seed node *s*, and restarting probability *c*
- Goal: find RWR score vector \vec{r} satisfying

$$\vec{r} = (1-c)\widetilde{A}^T\vec{r} + c\vec{q}$$

Input:

- $\widetilde{A} \in \mathbb{R}^n$: row-normalized adjacency matrix
- $\vec{q} \in \mathbb{R}^n$: query vector where $\vec{q}_s = 1$ and $\vec{q}_i = 0$, $\forall i \neq s$
- $c \in \mathbb{R}$: restarting probability

Output:

• $\vec{r} \in \mathbb{R}^n$: RWR score vector with regard to node *s*

Previous Methods

Background:

- RWR score vector \vec{r} has to be computed with regard to many different query vectors \vec{q} s
- Computing \vec{r} from scratch (e.g., the iterative method) takes too long for large graphs

Approach:

Preprocessing the graph to speed up the RWR computation

Limitations:

• Previous preprocessing methods require too much space and/or do not guarantee accuracy of \vec{r}

Previous Method: Inversion (1)

 Background: computing RWR boils down to solving a linear system

$$\vec{r} = (1 - c)\widetilde{A}^T\vec{r} + c\vec{q}$$

$$\Leftrightarrow \left(\boldsymbol{I} - (1 - c)\widetilde{A}^T\right)\vec{r} = c\vec{q}$$

$$\Leftrightarrow \boldsymbol{H}\vec{r} = c\vec{q}$$

where $\boldsymbol{H} = \boldsymbol{I} - (1 - c)\widetilde{A}^T$

Previous Method: Inversion (2)

- Preprocess phase (one-time cost): compute H^{-1}
- Query phase (repetitive cost): compute \vec{r}

$$\vec{r} = H^{-1}(c\vec{q})$$

Advantages:

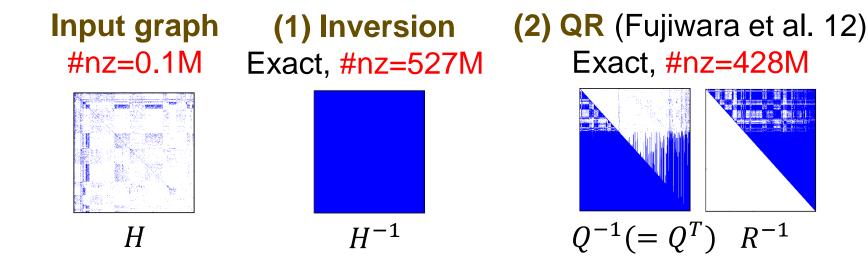
□ Fast query speed (one matrix-vector multiplication)

Disadvantages:

- □ Inverting *H* takes too long
- H^{-1} is usually too dense to fit in memory

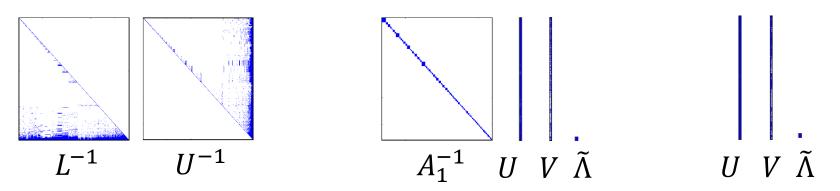
Other Preprocessing methods (1)

- Replace H^{-1} with sparser matrices by reordering and decomposing H
- Still expensive in terms of space and/or inaccurate



Sparsity pattern of preprocessed matrices on the Routing dataset

(3) LU (Fujiwara et al. 12)(4) B_LIN (Tong et al. 07) (5) NB_LIN Exact, #nz=10M Approx, #nz=8M Approx, #nz=3M

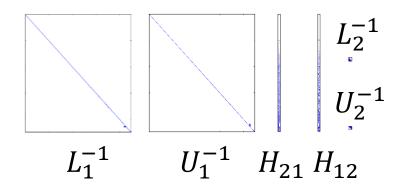


Sparsity pattern of preprocessed matrices on the Routing dataset

Proposed Method: BEAR (1)

• We propose *BEAR*, a fast, space-efficient, and accurate RWR computation method

(6) BEAR-Exact (Proposed) Exact, #nz=0.4M



Sparsity pattern of preprocessed matrices on the Routing dataset

Proposed Method: BEAR (2)

- **BEAR** offers two versions
 - □ *BEAR-Exact*: guarantees accuracy
 - BEAR-Approx: fast and space-efficient but allows small error
- **BEAR** consists of the two phases
 - Preprocessing phase (one-time cost): partitions the adjacency matrix into submatrices and precomputes several matrices using the submatrices
 - Query phase (repetitive cost): compute RWR scores accurately from precomputed matrices

BEAR: Main Idea

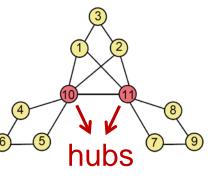
• The key issue is inverting a matrix

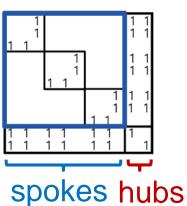
$$\overrightarrow{r} = \left(I - (1 - c)\widetilde{A}^T\right)^{-1} c \overrightarrow{q} = H^{-1} c \overrightarrow{q}$$

- Use "block elimination" idea
 - If we can invert a submatrix of H easily, then we can invert H easily as well!
- But, the original adjacency matrix is not block elimination-friendly
 - Reorder the graph to easily invert a submatrix!

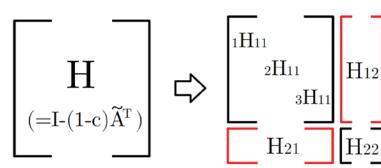
Preprocessing Phase

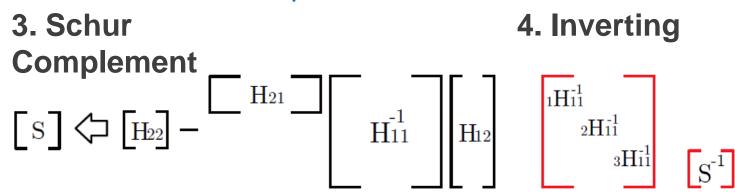
1. Reordering





2. Partitioning





Aside: Graph Reordering

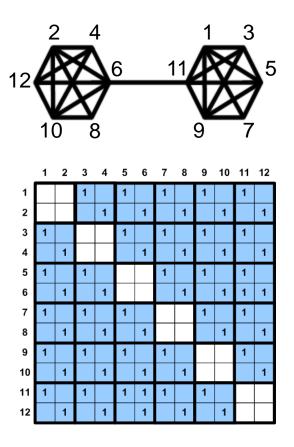
SlashBurn: Graph Compression and Mining beyond Caveman Communities (ICDM 2011, TKDE 2014)

U Kang (SNU) Yongsub Lim (SNU)

Christos Faloutsos (CMU)

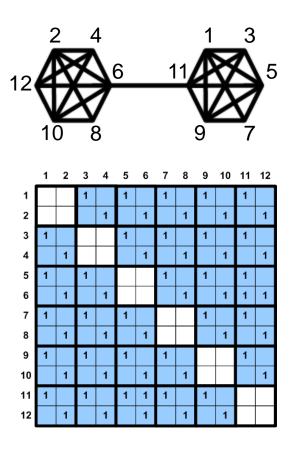
Node Order Matters

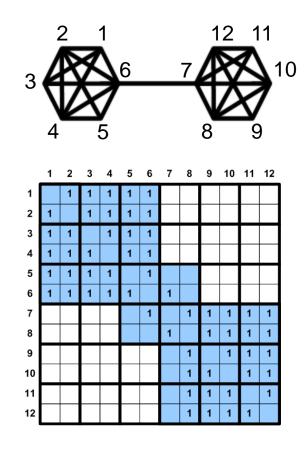
• A graph and the adjacency matrix



Node Order Matters

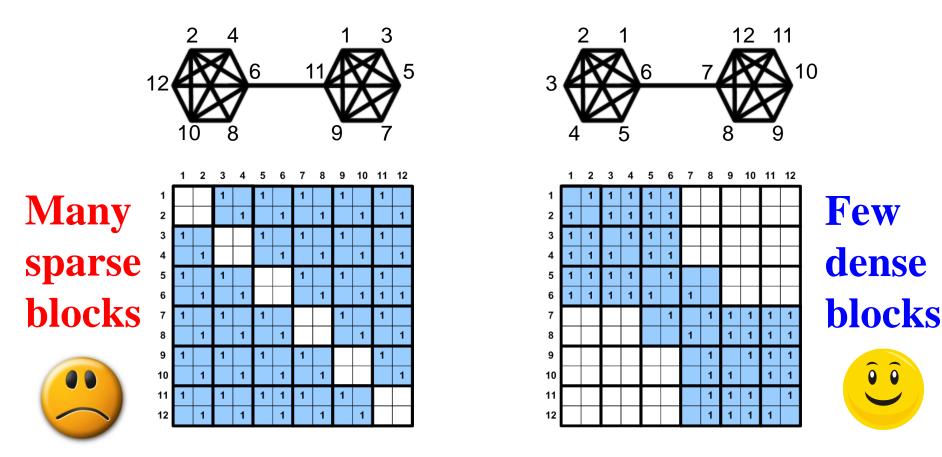
Same graphs with different orderings





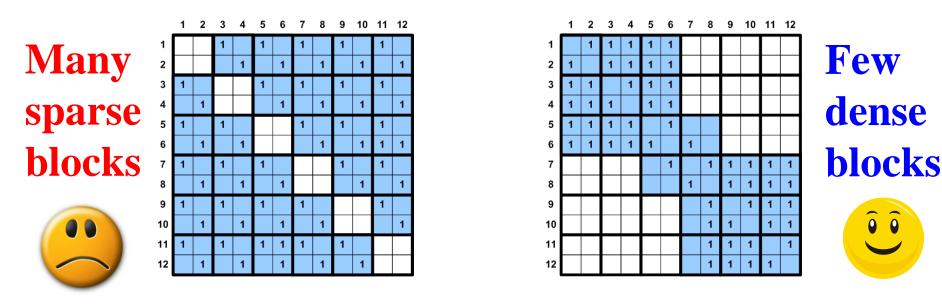
Good ordering = Good compression

Same graphs with different orderings

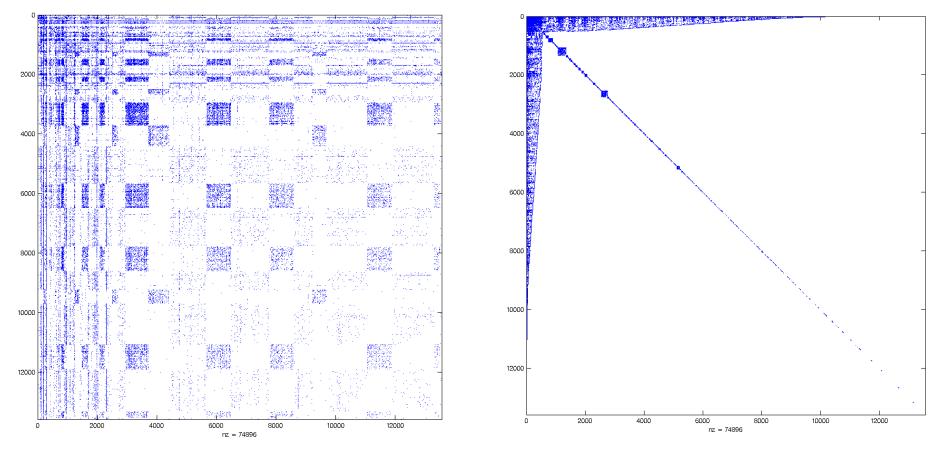


Problem Definition

- Given a graph, how can we lay-out its edges so that nonzero elements are well-clustered?
- Better clustering = better compression



Main Result

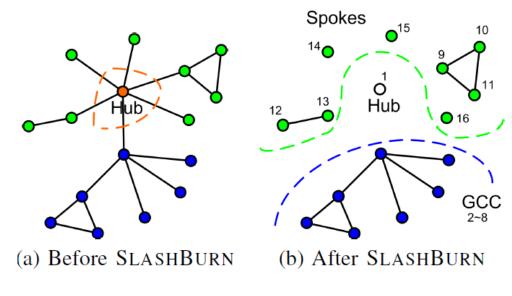


Original

SlashBurn

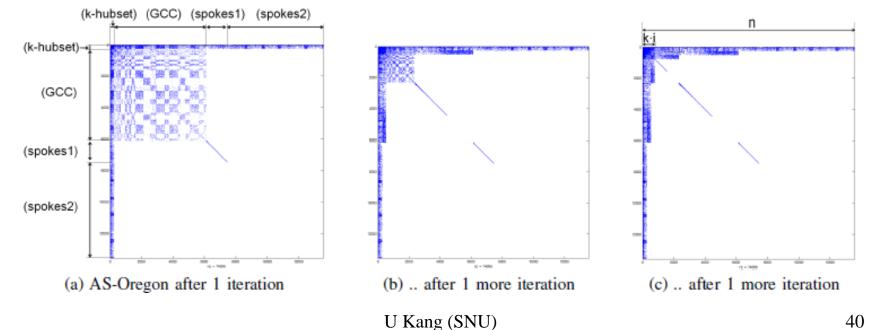
Slash-Burn method

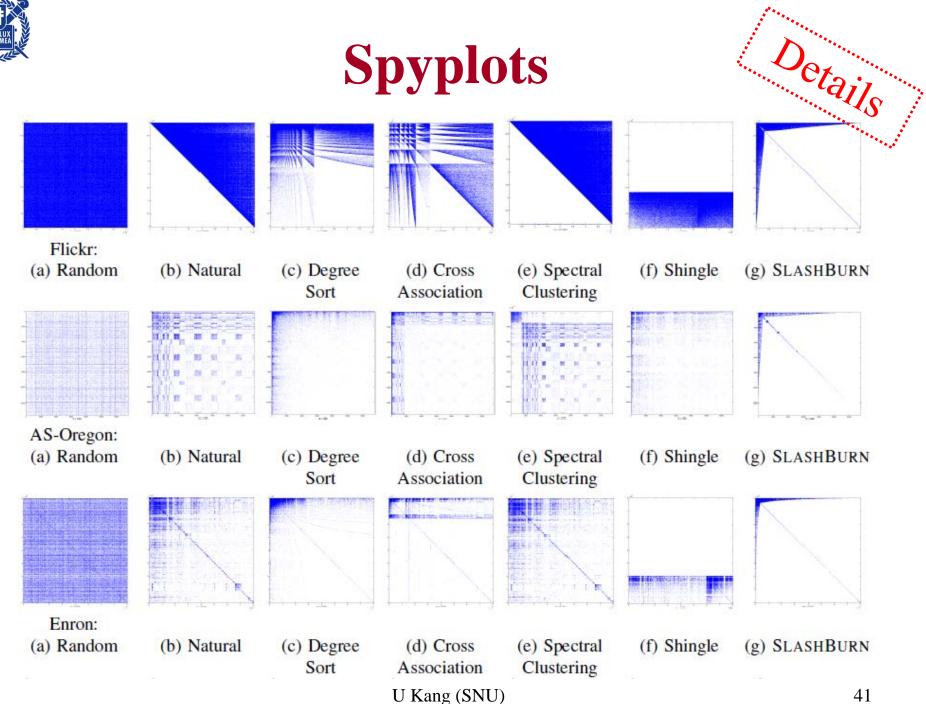
- 'Slash' the top k hubs, and 'burn' the edges
- Move k hubs to the front of the row/column, non-GCC to the back of the row/column
- Continue on the remaining GCC



Slash-Burn method

- 'Slash' the top k hubs, and 'burn' the edges
- Move k hubs to the front of the row/column, non-GCC to the back of the row/column
- Continue on the remaining GCC

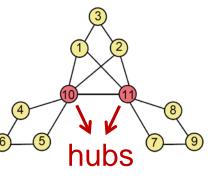


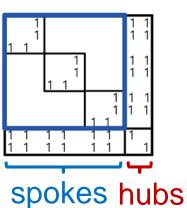


End of Aside

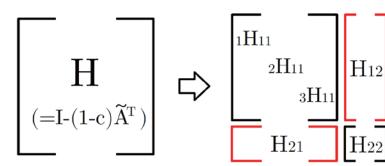
Preprocessing Phase

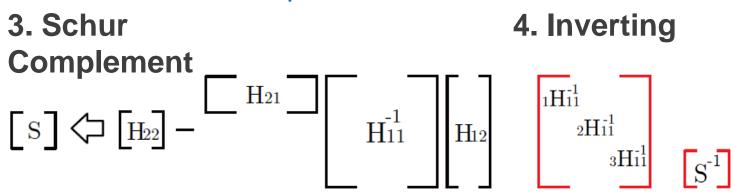
1. Reordering





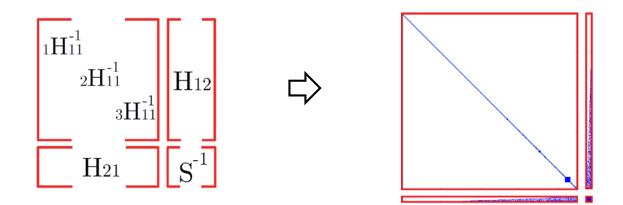
2. Partitioning



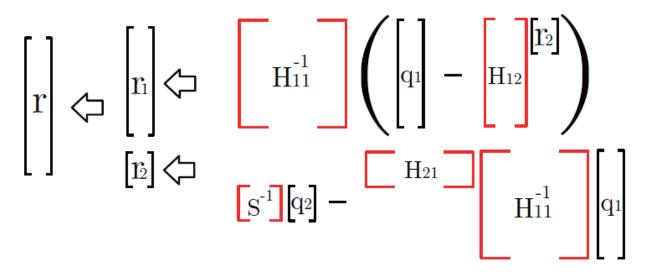


Preprocessing Phase: Output

- Precomputed matrices are small or composed of small diagonal blocks
- Require little storage

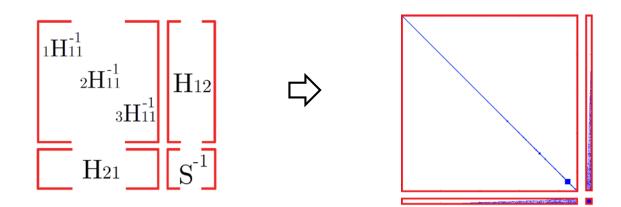


- Given query vector \vec{q} , compute RWR score vector \vec{r} using the precomputed matrices
- Theorem (Block Elimination): This equation exactly computes RWR scores



BEAR-Approx

Remove small entries in precomputed matricesFast and space-efficient but allows small error



Experimental Settings

- Machine: single PC with with a 4-core CPU and 16GB memory
- **Datasets**: large-scale real-world network data

dataset	#nodes	# edges
Routing	22,963	48,436
Co-author	31,163	120,029
\mathbf{Trust}	131,828	841,372
$\mathbf{E}\mathbf{mail}$	265, 214	420,045
${f Web-Stan}$	281,903	2,312,497
${f Web-Notre}$	325,729	1,497,134
$\mathbf{Web} extsf{-BS}$	685, 230	7,600,595
Talk	2,394,385	5,021,410
Citation	3,774,768	16,518,948

Competitors

Exact methods

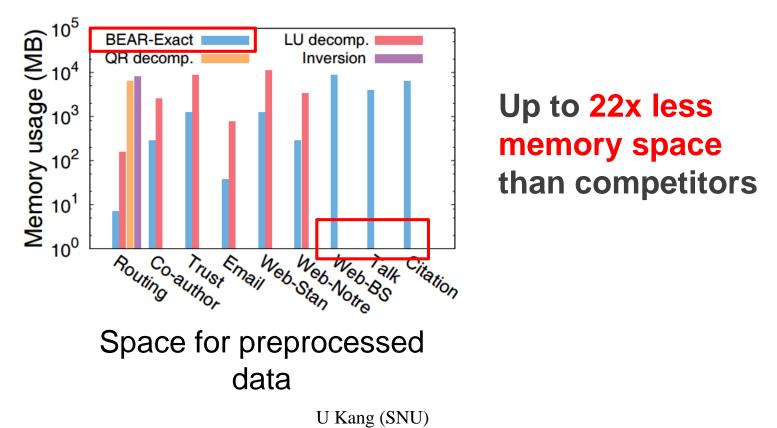
- Inversion
- Iterative method
- LU decomp. (Fujiwara et al., 2012)
- □ QR decomp. (Fujiwara et al., 2012)

Approximate methods

- □ BLIN, NB_LIN (Tong et al., 2008)
- □ RPPR, BRPPR (Gleich et al., 2006)

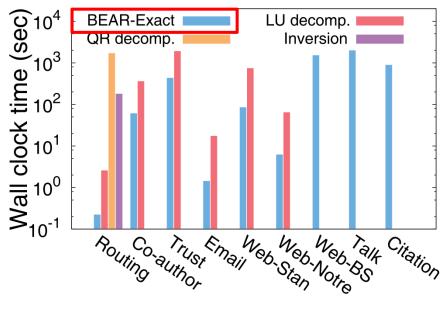
Q1. Space Efficiency

Q1. How much memory space does BEAR-Exact require for their precomputed matrices?



Q2. Preprocessing Time

How long does the preprocessing phase of BEAR-Exact take?

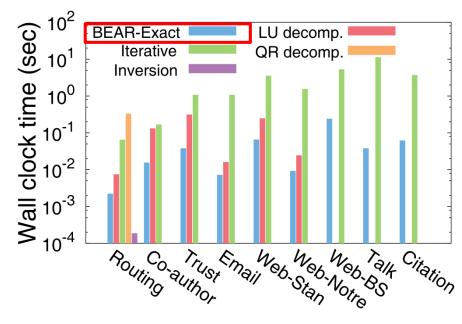


Up to 12x less preprocessing time than other methods

Preprocessing time of exact methods

Q3. Query Time

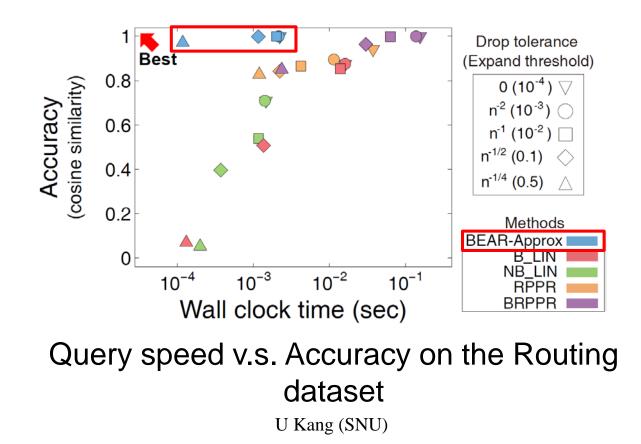
How long does the query phase of BEAR-Exact take?



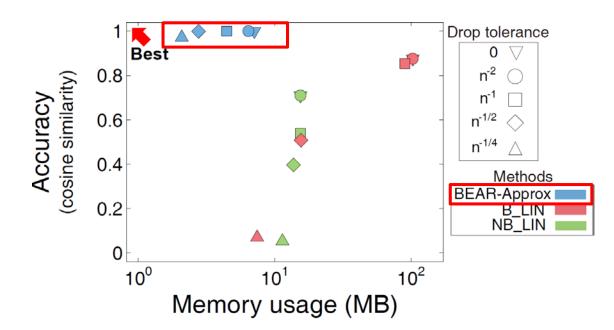
Up to 8x less query time than LU decomp. Up to 300x less query time than Iterative method

Query time of exact methods

Does BEAR-Approx provide a better trade-off between speed and accuracy than other methods?



Does BEAR-Approx provide a better trade-off between space and accuracy than other methods?



Space for preprocessed data v.s. Accuracy on the Routing dataset

Conclusion: BEAR

BEAR (Block Elimination Approach for RWR)

- partitions the adjacency matrix into small submatrices using the *hub-and-spoke* structure of real-world graphs
- computes RWR scores accurately from the submatrices using *block elimination*

BEAR-Exact

□ up to 22× less space, 12× less preprocessing time, and 8× less query time than other exact methods

BEAR-Approx

better trade-off between time, space, and accuracy than other approximate methods

http://datalab.snu.ac.kr/bear

BePI: Fast and Memory-Efficient Method for Billion-Scale Random Walk with Restart (SIGMOD 2017)

http://datalab.snu.ac.kr/bepi

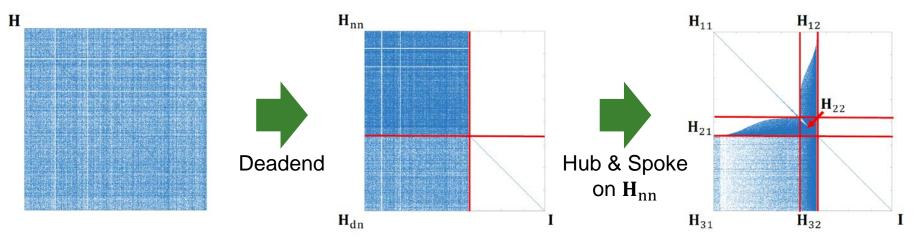
Proposed Method

BePI (Best of Preprocessing and Iterative approaches)

- A fast and scalable method by taking the advantages of both preprocessing and iterative methods
- Key Ideas
 - Idea 1) Exploit graph characteristics to adopt a preprocessing approach for fast query speed
 - Idea 2) Incorporate an iterative method into the preprocessing approach to increase the scalability
 - Idea 3) Optimize the performance of the iterative method to accelerate RWR computation speed
 - (Omitted for brevity; see the paper)

Proposed Method – Idea 1

• Combine deadend and hub & spoke reordering



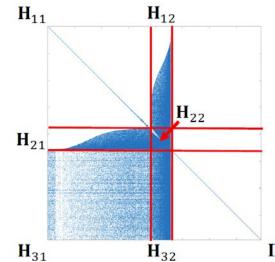
H₁₁ is a block diagonal matrix!

$$\mathbf{Hr} = c \mathbf{q}_{s} \Leftrightarrow \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} & \mathbf{0} \\ \mathbf{H}_{21} & \mathbf{H}_{22} & \mathbf{0} \\ \mathbf{H}_{31} & \mathbf{H}_{32} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3} \end{bmatrix} = c \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{2} \\ \mathbf{q}_{3} \end{bmatrix}$$

Proposed Method – Idea 2

- Incorporate an iterative method into the preprocessing approach
 - Computing H_{11}^{-1} is trivial since it is block diagonal
 - \Box But, inverting **S** is impractical in very large graphs
 - $\dim(S) = #$ of hubs > 1 million (10⁶) in large graphs
 - e.g., 10 million hubs in the Twitter network

$$\begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{11}^{-1} (c \mathbf{q}_{1} - \mathbf{H}_{12} \mathbf{r}_{2}) \\ \mathbf{S}^{-1} (c \mathbf{q}_{2} - c \mathbf{H}_{21} \mathbf{H}_{11}^{-1} \mathbf{q}_{1}) \\ c \mathbf{q}_{3} - \mathbf{H}_{31} \mathbf{r}_{1} - \mathbf{H}_{32} \mathbf{r}_{2} \end{bmatrix}$$
$$\mathbf{S} = \mathbf{H}_{22} - \mathbf{H}_{21} \mathbf{H}_{11}^{-1} \mathbf{H}_{12}$$
$$\mathbf{U} \operatorname{Kang}(SNU)$$



Proposed Method – Idea 2

- Incorporate an iterative method into the preprocessing approach
 - Solution. Solve the linear system on S using *an iterative linear solver* such as GMRES [Saad et al., `86]

$$\mathbf{r}_2 = \mathbf{S}^{-1} (c \mathbf{q}_2 - c \mathbf{H}_{21} \mathbf{H}_{11}^{-1} \mathbf{q}_1)$$

$$\Leftrightarrow \mathbf{S} \mathbf{r}_2 = c \mathbf{q}_2 - c \mathbf{H}_{21} \mathbf{H}_{11}^{-1} \mathbf{q}_1 \triangleq \widetilde{\mathbf{q}}_2$$

• Linear solvers obtain the accurate r_2 without inverting **S**

$$\mathbf{Sr}_2 = \widetilde{\mathbf{q}}_2$$

Introducing the linear solver increases the scalability of RWR computation!

Experimental Questions

- Q1. (Space) How much memory space does BePI requires for their preprocessed results?
- Q2. (Prep. Time) How long does the preprocessing phase of BePI take?
- Q3. (Query Time) How quickly does BePI respond to an RWR query?
- Q4. (Scalability) How well does **BePI** scale up?

Q1. Space Efficiency

How much memory space does BePI requires for their preprocessed results?

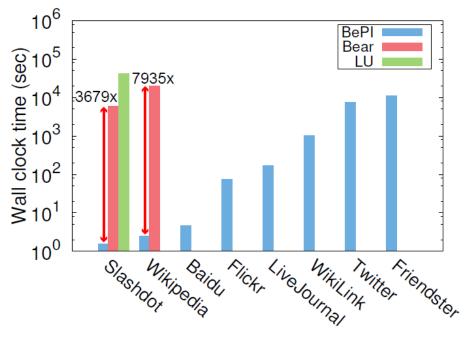


BePI is up to $130 \times less$ memory space than other preprocessing methods!

Memory space for preprocessed data

Q2. Preprocessing Time

How long does the preprocessing phase of BePI take?

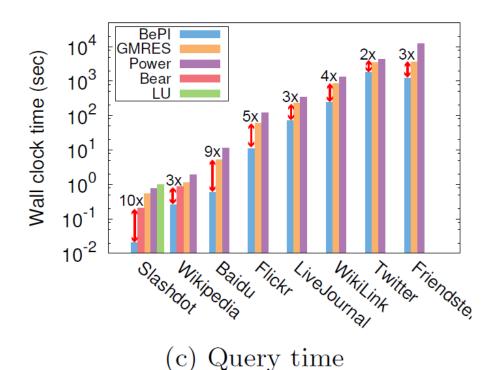


BePI is significantly faster than other methods in terms of preprocessing time!

Preprocessing time

Q3. Query Time

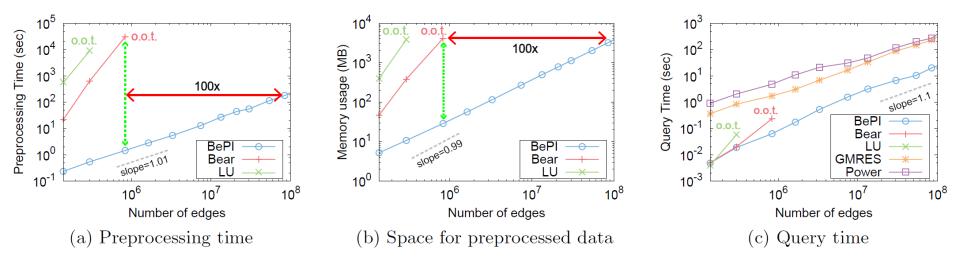
How quickly does BePI respond to an RWR query?



BePI is up to 9× faster than other competitors in terms of query speed!

Q4. Scalability of BePI

- How well does **BePI** scale up?
 - Processes 100 × larger graphs than other preprocessing methods
 - □ Shows the fastest RWR computation speed among others



BePI shows the best performance in terms of scalability and running time!

Conclusion: BePI

- BePI (Best of Preprocessing and Iterative approaches)
 - □ Idea 1) Exploit graph characteristics for a prep. method
 - **Idea 2)** Incorporate an iterative method into the prep. method
 - □ Idea 3) Optimize the performance of the iterative method

Main Results

- Fast and scalable computation for RWR on billion-scale graphs
- Requires 130× less memory space & processes 100 × larger graphs than other preprocessing methods
- Computes RWR scores 9 × faster than other existing methods

http://datalab.snu.ac.kr/bepi

Outline

- Random Walk with Restart (RWR)
- Fast Exact RWR
- ➡ ☐ Fast Approximate RWR
 - **Conclusions**

- I will describe two state-of-the-art approximate RWR algorithms
 - Static method TPA (to appear at ICDE 2018)
 - Dynamic method OSP (to appear at WWW 2018)

TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs (ICDE 2018)

http://datalab.snu.ac.kr/tpa

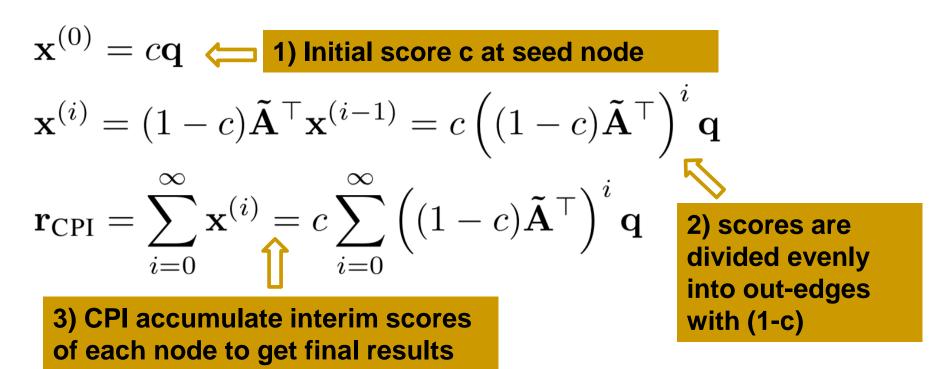
Problem Definition

How can we approximately compute RWR quickly, with little loss of accuracy?

CPI: Cumulative Power Iteration

- Exact RWR computation method
- Re-interpretation of RWR
- Propagation of scores across a graph
 - 1) Score c is generated from the seed node
 - 2) At each step, scores are divided evenly into out-edges with decaying coefficient (1 c)
 - 3) Each node accumulates scores they have received
 - 4) Accumulated scores become RWR score of each node

CPI: Cumulative Power Iteration

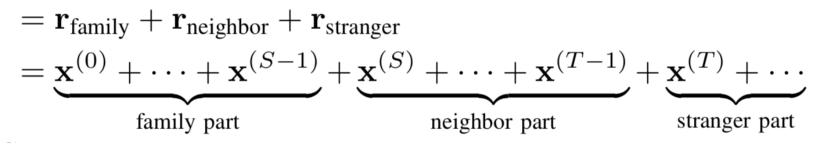


- $\mathbf{x}(i) \in \mathbb{R}^{n \times 1}$: interim score vector computed from *i* th iteration
- Correctness of CPI: Theorem 1
- For PageRank computation, the seed vector **q** is set to $\frac{1}{n}$ **1**

TPA: Two Phase Approximation

- TPA approximates RWR scores with fast speed and high accuracy
 - CPI performs iterations until convergence
 - Divide the whole iterations in CPI into three parts as follows :

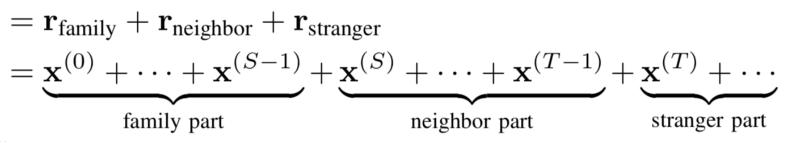
 \mathbf{r}_{CPI}



S : starting iteration of $r_{neighbor}$, T : starting iteration of $r_{stranger}$

TPA: Two Phase Approximation

\mathbf{r}_{CPI}



 $\mathbf{r}_{\text{TPA}} = \mathbf{r}_{\text{family}} + \mathbf{\tilde{r}}_{\text{neighbor}} + \mathbf{\tilde{r}}_{\text{stranger}}$

- Ist Phase: Stranger Approximation
 - Approximates $r_{stranger}$ in RWR using PageRank
- 2nd Phase: Neighbor Approximation
 - Approximates $r_{neighbor}$ using r_{family}

Stranger Approximation - Definition

 PageRank score vector p_{CPI} is represented by CPI as follows:

$$\mathbf{x}^{\prime(0)} = \frac{c}{n} \mathbf{1} \quad \mathbf{x}^{\prime(i)} = (1-c) \mathbf{\tilde{A}}^{\top} \mathbf{x}^{\prime(i-1)}$$

$$\mathbf{p}_{CPI}$$

$$= \mathbf{p}_{\text{family}} + \mathbf{p}_{\text{neighbor}} + \mathbf{p}_{\text{stranger}}$$

= $\mathbf{x}^{\prime(0)} + \cdots + \mathbf{x}^{\prime(S-1)} + \mathbf{x}^{\prime(S)} + \cdots + \mathbf{x}^{\prime(T-1)} + \mathbf{x}^{\prime(T)} + \cdots$
family part neighbor part stranger part

 r_{stranger} in RWR is approximated by p_{stranger} in PageRank as follows:

 $\mathbf{\hat{r}}_{stranger} = \mathbf{p}_{stranger}$

Stranger Approximation - Intuition

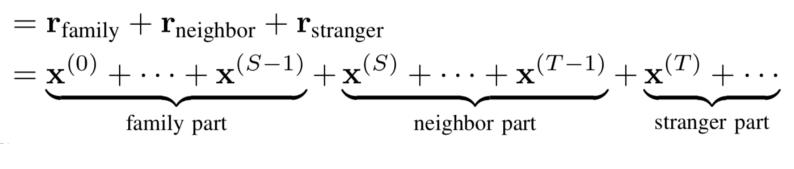
- The amount of scores propagated into each node
- 1. # of in-edges
 - Nodes with many in-edges have many sources to receive scores
- 2. Distance from seed node
 - Scores are decayed by factor (1-c) as iteration progresses
 - Nodes close to the seed node take in high scores

Stranger Approximation - Intuition

- In stranger iterations
 - Scores $(x(T), x(T + 1), \dots)$ are mainly determined by # in-edges
 - Nodes are already far from seed
- PageRank is solely determined by arrangement of edges (= # in-edges) !!
 - Motivation of Stranger Approximation
 - Estimate stranger iterations in RWR with those in PageRank
- Precompute $\tilde{r}_{stranger}$ in preprocessing phase

TPA: Two Phase Approximation

\mathbf{r}_{CPI}



 $\mathbf{r}_{\text{TPA}} = \mathbf{r}_{\text{family}} + \mathbf{\tilde{r}}_{\text{neighbor}} + \mathbf{\tilde{r}}_{\text{stranger}}$

- Ist Phase: Stranger Approximation
 - Approximates $r_{stranger}$ in RWR using PageRank
- 2nd Phase: Neighbor Approximation
 - Approximates $r_{neighbor}$ using r_{family}

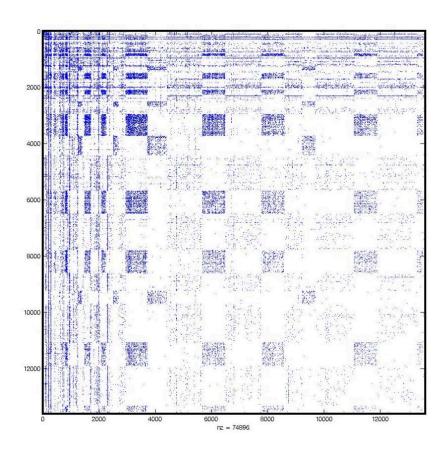
Neighbor Approximation - Definition

The neighbor approximation

- Limit computation to r_{family}
- Estimate $r_{neighbor}$ by scaling r_{family} as follows:

$$\tilde{\mathbf{r}}_{\text{neighbor}} = \frac{\|\mathbf{r}_{\text{neighbor}}\|_1}{\|\mathbf{r}_{\text{family}}\|_1} \mathbf{r}_{\text{family}} = \frac{(1-c)^S - (1-c)^T}{1 - (1-c)^S} \mathbf{r}_{\text{family}}$$

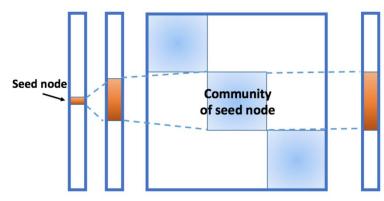
Neighbor Approximation - Intuition



Block-wise, Community-like structure of real-world graphs^[1]

[1] U. Kang and C. Faloutsos. Beyond 'caveman communities': Hubs and spokes for graph compression and mining. In *ICDM*, 2011

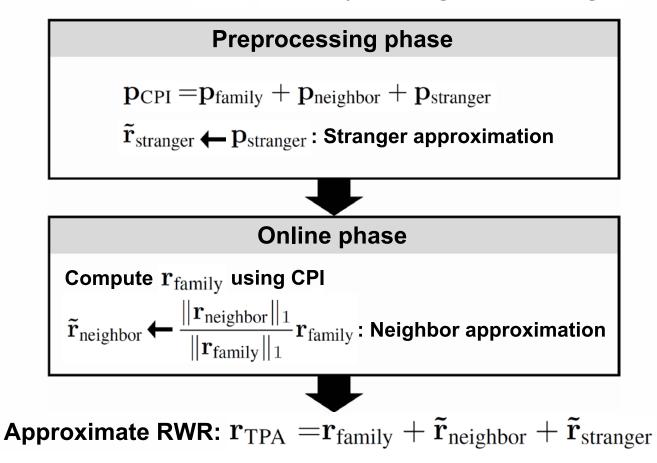
Neighbor Approximation - Intuition



- Nodes which receive scores in the early iterations (family part)
 - Would receive scores again in the following iterations (neighbor part)
- Nodes which have more in-edges thus receive more scores in the early iterations
 - Would receive more scores than other nodes in the following iterations.

TPA: Two Phase Approximation

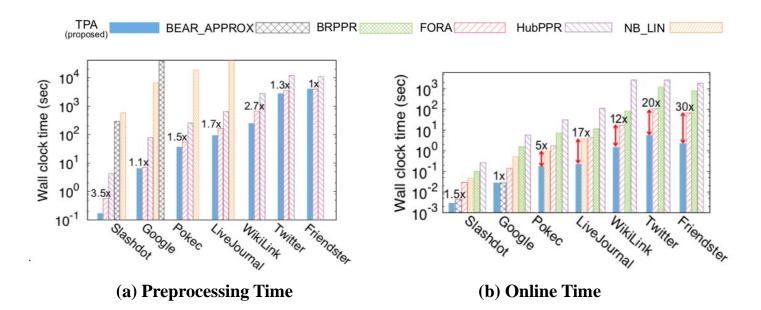
Exact RWR: $\mathbf{r}_{CPI} = \mathbf{r}_{family} + \mathbf{r}_{neighbor} + \mathbf{r}_{stranger}$



Experimental Questions

- Q1. Performance
 - How much does TPA enhance the computational efficiency compared with its competitors?
- Q2. Accuracy
 - □ How much does TPA sacrifice accuracy?

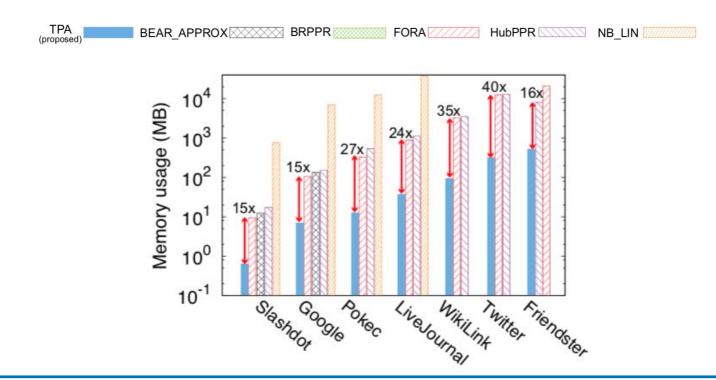
How long does **TPA** take for its preprocessing phase and online phase, respectively?



TPA takes smaller running time in both preprocessing and online phases (up to 30x)

U Kang (SNU)

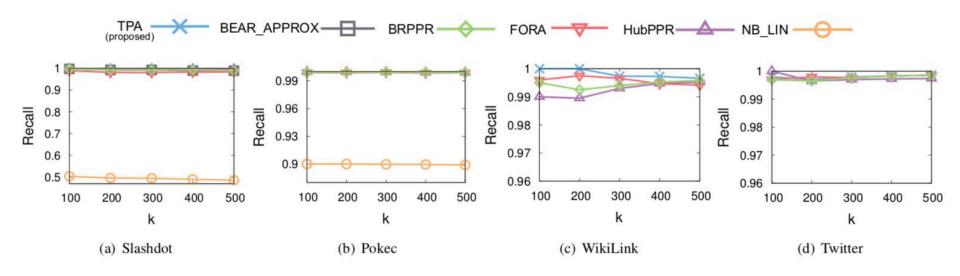
How much memory space does **TPA** requires for preprocessed results?



TPA requires up to 40x smaller memory space than competitors

Q2: Accuracy of TPA

How much does **TPA** sacrify its accuracy?



TPA provides the best accuracy among competitors!

Conclusion: TPA

- TPA (Two Phase Approximation)
 - Neighbor Approximation
 - block-wise structure of real-world graphs
 - Stranger Approximation
 - PageRank
- Main Results
 - Requires 40x memory space & preprocesses 3.5x time than other preprocessing methods
 - Computes RWR scores 30x faster than other existing methods in online phase
 - Maintaining high accuracy

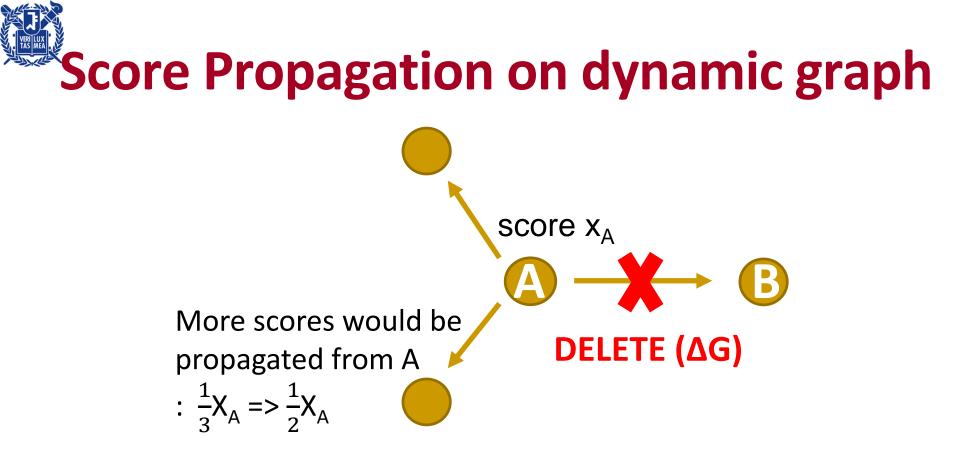
http://datalab.snu.ac.kr/tpa

Fast and Accurate Random Walk with Restart on Dynamic Graphs with Guarantees (WWW 2018)

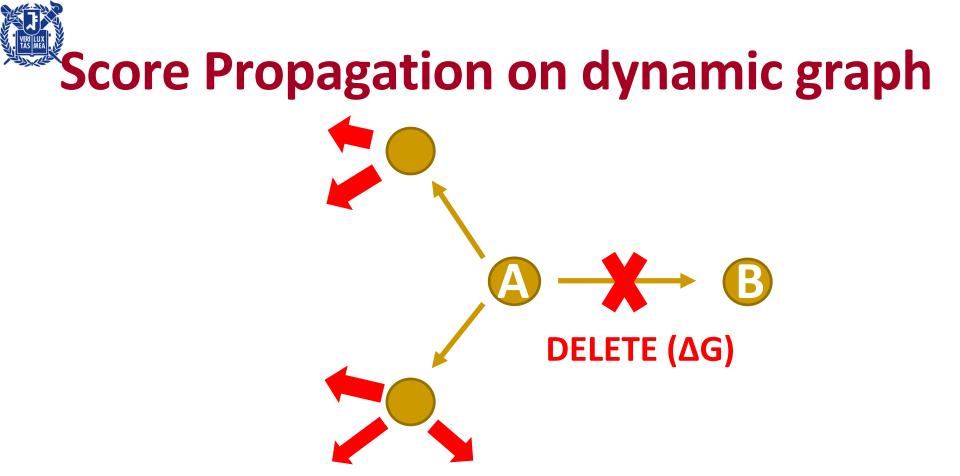
http://datalab.snu.ac.kr/osp

Problem Definition

- How can we approximately compute RWR quickly, for dynamic graphs?
 - Dynamic graphs: nodes/edges are added/removed continuously
 - We want to update RWR scores quickly, without computing it from scratch for graph update



- RWR scores of nodes are determined by arrangement of edges
 - 1. When the graph G is updated with ΔG
 - 2. Propagation of scores around ΔG is changed



- 3. These small changes are propagated
- 4. Affect previous propagation pattern across whole graph
- 5. Finally lead to \mathbf{r}_{new} different from \mathbf{r}_{old}

OSP: Offset Score Propagation

$$\mathbf{q}_{\text{offset}} \leftarrow (1-c)(\tilde{\mathbf{B}}^{\top} - \tilde{\mathbf{A}}^{\top})\mathbf{r}_{\text{old}} = (1-c)(\Delta \mathbf{A})^{\top}\mathbf{r}_{\text{old}}$$

$$\mathbf{x}_{\text{offset}}^{(i)} \leftarrow ((1-c)\tilde{\mathbf{B}}^{\top})^{i} \mathbf{q}_{\text{offset}}$$

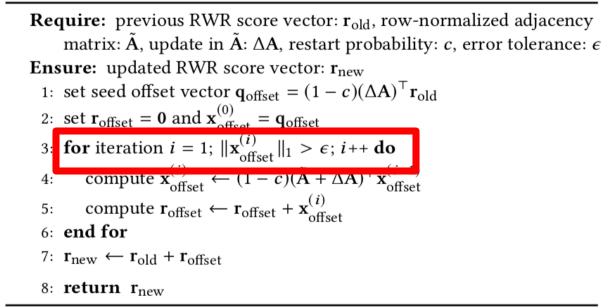
$$\mathbf{r}_{\text{offset}} \leftarrow \sum_{i=0}^{\infty} \mathbf{x}_{\text{offset}}^{(i)} = \sum_{i=0}^{\infty} ((1-c)\tilde{\mathbf{B}}^{\top})^{i} \mathbf{q}_{\text{offset}}$$

 $\mathbf{r}_{\text{new}} \leftarrow \mathbf{r}_{\text{old}} + \mathbf{r}_{\text{offset}}$

- 1. Calculate an offset seed vector **q**_{offset}
- 2. Propagate the offset scores across $G+\Delta G$ to get **an off** set score vector \mathbf{r}_{offset}
- 3. Finally, OSP adds up \mathbf{r}_{old} and \mathbf{r}_{offset} to get \mathbf{r}_{new}

OSP-T: OSP with Trade-off

Algorithm 1: OSP and OSP-T Algorithm



- Approximate method for dynamic RWR
- Use the same algorithm with OSP
- Regulates accuracy and speed using higher error tolerance parameter ε

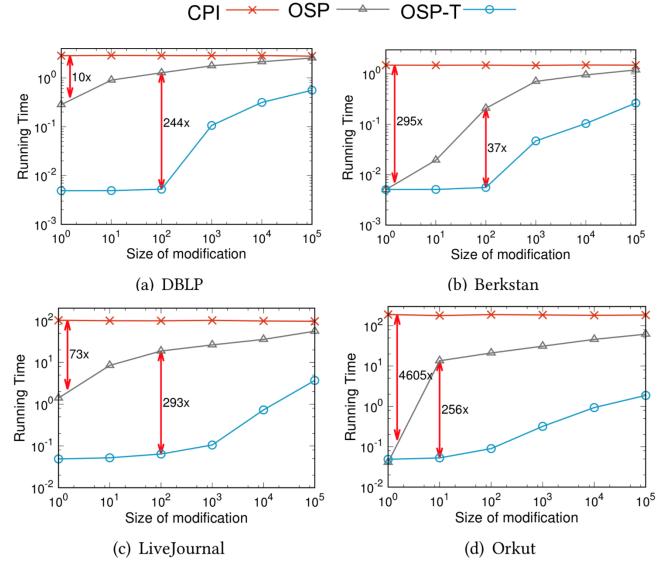
Experimental Questions

- Q1. (Performance of OSP)
 - How much does OSP improve performance for dynamic RWR computation from baseline static method CPI?
- Q2. (Performance of OSP-T)
 - How much does OSP-T enhance computation efficiency, accuracy compared with its competitors?

Q1. Performance of OSP

- How much does OSP improve performance for dynamic RWR computation from baseline static method CPI?
- Running time for tracking RWR exactly on a dynamic graph G varying the size of ∆G
 - □ Initial graph G with all its edges
 - Modify G by deleting edges.
 - 1 edges to 10⁵ edges

Q1. Performance of OSP



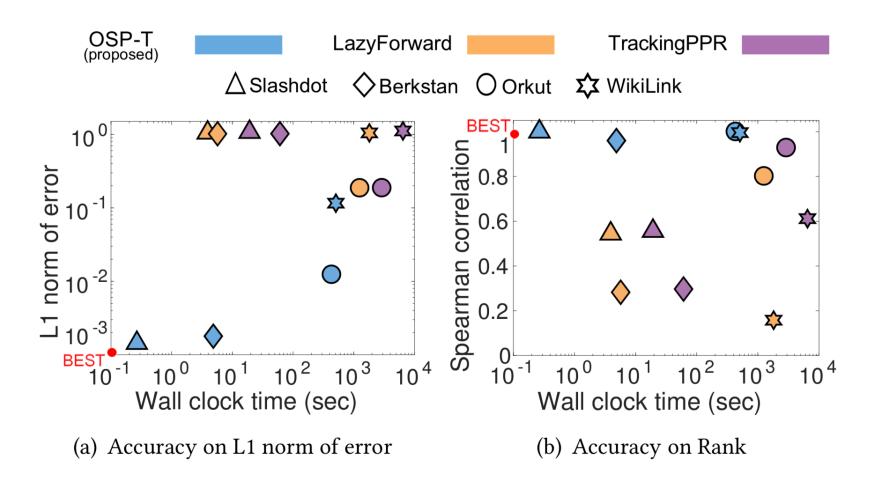
U Kang (SNU)

Q2. Performance of OSP-T

- How much does OSP-T enhance computation efficiency, accuracy compared with its competitors?
- Experimental setting
 - Generate a uniformly random edge stream and divide the stream into two parts
 - Extract 10 snapshots from the second part
 - □ Initialize a graph with the first part of the stream
 - □ Update the graph for each new snapshot arrival
 - At the end of the updates, compare each algorithm.

Q2. Performance of OSP-T

Trade-off between accuracy and running time



Conclusion: OSP

- OSP (Offset Score Propagation)
 - 1. Calculate offset scores around the modified edges
 - 2. Propagate the offset scores across the updated graph
 - 3. Merge them with previous RWR scores to get updated RWR scores

Main Results

- Exactness of OSP
- □ Error bound and time complexity of OSP-T
- Faster and more accurate RWR computation than other methods on Dynamic graphs

http://datalab.snu.ac.kr/osp

Outline

- Random Walk with Restart (RWR)
- Fast Exact RWR
- Fast Approximate RWR
- ➡ □ Conclusions

Conclusions

- RWR for ranking in graphs: important problem with many real world applications
 - Web search, friend recommendation, product (e.g. TV program) recommendation, ...
- BePI: state-of-the-art method for *exact* RWR
 - □ Linear algebra + Graph theory + Real World Graph Analysis
- TPA and OSP: state-of-the-art methods for approximate RWR

References

- U Kang and Christos Faloutsos, Beyond `Caveman Communities': Hubs and Spokes for Graph Compression and Mining, IEEE International Conference on Data Mining (ICDM) 2011, Vancouver, Canada
- Kijung Shin, Jinhong Jung, Lee Sael, and U Kang, BEAR: Block Elimination Approach for Random Walk with Restart on Large Graphs, ACM International Conference on Management of Data (SIGMOD) 2015, Melbourne, Australia.
- Jinhong Jung, Namyong Park, Lee Sael, and U Kang, BePI: Fast and Memory-Efficient Method for Billion-Scale Random Walk with Restart, ACM International Conference on Management of Data (SIGMOD) 2017, Chicago, IL, USA.
- Minji Yoon, Jinhong Jung, and U Kang, TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs, 34th IEEE International Conference on Data Engineering (ICDE) 2018, Paris, France.
- Minji Yoon, Woojeong Jin, and U Kang, Fast and Accurate Random Walk with Restart on Dynamic Graphs with Guarantees, The Web Conference (WWW) 2018, Lyon, France.

Thank you ! http://datalab.snu.ac.kr