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Today’s Talk

 RWR for ranking in graphs: important problem 
with many real world applications
 Web search, friend recommendation, product 

recommendation, …

 BePI: state-of-the-art method for exact RWR
 Linear algebra + Graph theory + Real World Graph Analysis

 TPA and OSP: those for approximate RWR
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Outline

Random Walk with Restart (RWR)
Fast Exact RWR
Fast Approximate RWR
Conclusions
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Proximity on Graphs

A BH1 1
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a.k.a.: Relevance, Closeness, ‘Similarity’…

[Tong-Faloutsos, ‘06]

Application
• Recommendation
• Ranking
• Link Prediction
• Anomaly Detection
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Good proximity measure?

 Shortest path is not good:

 No effect of degree-1 nodes (E, F, G)!
 Multi-faceted relationships
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Good proximity measure?

 Network flow is not good:

 Does not punish long paths
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What is good notion of proximity?

A BH1 1

D
1 1
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• Multiple connections  

…

[Tong-Faloutsos, ‘06]
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What is good notion of proximity?

A BH1 1

D
1 1

E
F

G
1 11

I J1
1 1

• Multiple connections

• Quality of connection

•Length, Degree, 

Weight…

•Answer: RWR !

…

[Tong-Faloutsos, ‘06]
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RWR: Example

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …
Conference Author

Q: What is the most 
related conference to 
ICDM?

A: Random Walk With 
Restart from S={ICDM}
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RWR: Example

ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011
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0.004



U Kang (SNU) 11

RWR: Applications

 Web Search: Query Suggestion

aa

mexiana

american airline

www.aa.com

en.wikipedia.org/wiki/Mexicana

www.theaa.com/travelwatch/planner_main.jsp

Query
URL

Suggested



U Kang (SNU) 12

RWR: Applications

 Friend Recommendation



U Kang (SNU) 13

RWR: Applications

 TV Program Recommendation
User TV Program



U Kang (SNU) 14

Random Walk with Restart (1)

 Given a query node, compute proximities of other 
nodes to the query node

 A random surfer moves to one of its outgoing 
neighbor with prob. 1-c, and jumps to the query 
node with prob. c
 After many moves, RWR score of a node is 

proportional to # of times the node is visited
 Also called Personalized PageRank
 Similar to PageRank, but the random surfer jumps only 

to the query nodes
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Random Walk with Restart (2)

 RWR assumes a random surfer on a graph

𝑆𝑆𝑆𝑆

Random walk (with prob 1 − 𝑐𝑐) Restart (with prob 𝑐𝑐)

𝑆𝑆
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Random Walk with Restart (3)

 RWR computes the stationary probability that the 
surfer stays at each node

Node RWR Score
(relevance with node 2) 

1 0.21
2 0.31
3 0.14
4 0.25
5 0.09

Restarting probability 𝑐𝑐 = 0.2

2

5

1

4

3
seed node

0.21
0.31

0.25
0.14

0.09
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Conclusion: RWR

 Random Walk with Restart
 Personalized PageRank to compute node proximity

 Widely used for measuring proximities of nodes 
in graphs
 Applications: Web search, friend recommendation, 

product recommendation, …



U Kang (SNU) 18

Outline

Random Walk with Restart (RWR)
Fast Exact RWR
Fast Approximate RWR
Conclusions



U Kang (SNU) 19

Overview

 I will describe two state-of-the-art exact RWR 
algorithms
 BEAR (SIGMOD 2015)
 BePI (SIGMOD 2017)
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BEAR: Block Elimination Approach 
for Random Walk With Restart on 

Large Graphs
(SIGMOD 2015)

http://datalab.snu.ac.kr/bear
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Introduction

 Random Walk with Restart (RWR)
 Goal: measures the relevance between two nodes
 Properties: accounts for the global network structure 

and the multi-faceted relationship between nodes
 Applications: ranking, community detection, link 

prediction, and anomaly detection
 Question: How can we compute RWR on large 

graphs fast, efficiently, and accurately?
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Problem Definition

 Given: a graph 𝐺𝐺, a seed node 𝑠𝑠, and restarting 
probability 𝑐𝑐

 Goal: find RWR score vector 𝒓𝒓 satisfying 

𝒓𝒓 = 1 − 𝑐𝑐 �𝑨𝑨𝑻𝑻𝒓𝒓 + 𝑐𝑐𝒒𝒒
Input: 
• �𝑨𝑨 ∈ ℝ𝒏𝒏: row-normalized adjacency matrix
• 𝒒𝒒 ∈ ℝ𝒏𝒏: query vector where 𝒒𝒒𝒔𝒔 = 1 and 𝒒𝒒𝒊𝒊 = 0,∀𝑖𝑖 ≠ 𝑠𝑠
• 𝑐𝑐 ∈ ℝ: restarting probability
Output: 
• 𝒓𝒓 ∈ ℝ𝒏𝒏: RWR score vector with regard to node 𝑠𝑠
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Previous Methods

 Background:
 RWR score vector 𝒓𝒓 has to be computed with regard 

to many different query vectors 𝒒𝒒s
 Computing 𝒓𝒓 from scratch (e.g., the iterative method) 

takes too long for large graphs
 Approach:

 Preprocessing the graph to speed up the RWR 
computation

 Limitations:
 Previous preprocessing methods require too much 

space and/or do not guarantee accuracy of 𝒓𝒓
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Previous Method: Inversion (1)

 Background: computing RWR boils down to 
solving a linear system

𝒓𝒓 = 1 − 𝑐𝑐 �𝑨𝑨𝑻𝑻𝒓𝒓 + 𝑐𝑐𝒒𝒒
⇔ 𝑰𝑰 − 1 − 𝑐𝑐 �𝑨𝑨𝑻𝑻 𝒓𝒓 = 𝑐𝑐𝒒𝒒

⇔ 𝑯𝑯𝒓𝒓 = 𝑐𝑐𝒒𝒒

where 𝑯𝑯 = 𝑰𝑰 − 1 − 𝑐𝑐 �𝑨𝑨𝑻𝑻
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Previous Method: Inversion (2)

 Preprocess phase (one-time cost): compute 𝑯𝑯−𝟏𝟏

 Query phase (repetitive cost): compute 𝒓𝒓
𝒓𝒓 = 𝑯𝑯−𝟏𝟏(𝑐𝑐𝒒𝒒)

 Advantages:
 Fast query speed (one matrix-vector multiplication)

 Disadvantages:
 Inverting 𝑯𝑯 takes too long
 𝑯𝑯−𝟏𝟏 is usually too dense to fit in memory
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Other Preprocessing methods (1)

 Replace 𝑯𝑯−𝟏𝟏 with sparser matrices by reordering 
and decomposing 𝑯𝑯

 Still expensive in terms of space and/or inaccurate

(1) Inversion
Exact, #nz=527M

(2) QR (Fujiwara et al. 12)
Exact, #nz=428M

𝐻𝐻−1 𝑄𝑄−1(= 𝑄𝑄𝑇𝑇) 𝑅𝑅−1𝐻𝐻

Input graph
#nz=0.1M

Sparsity pattern of preprocessed matrices on the Routing 
dataset
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Other Preprocessing methods (2)

(3) LU (Fujiwara et al. 12)
Exact, #nz=10M

𝐿𝐿−1 𝑈𝑈−1

(4) B_LIN (Tong et al. 07)
Approx, #nz=8M

(5) NB_LIN
Approx, #nz=3M

𝐴𝐴1−1 𝑈𝑈 𝑉𝑉 �Λ 𝑈𝑈 𝑉𝑉 �Λ

Sparsity pattern of preprocessed matrices on the Routing 
dataset
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Proposed Method: BEAR (1)

 We propose BEAR, a fast, space-efficient, and 
accurate RWR computation method

𝐿𝐿1−1 𝑈𝑈1−1 𝐻𝐻21 𝐻𝐻12

𝐿𝐿2−1

𝑈𝑈2−1

(6) BEAR-Exact (Proposed) 
Exact, #nz=0.4M

Sparsity pattern of preprocessed matrices on the Routing 
dataset
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Proposed Method: BEAR (2)

 BEAR offers two versions
 BEAR-Exact: guarantees accuracy
 BEAR-Approx: fast and space-efficient but allows 

small error
 BEAR consists of the two phases
 Preprocessing phase (one-time cost): partitions the 

adjacency matrix into submatrices and precomputes 
several matrices using the submatrices

 Query phase (repetitive cost): compute RWR scores 
accurately from precomputed matrices
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BEAR: Main Idea

 The key issue is inverting a matrix
 𝒓𝒓 = 𝑰𝑰 − 1 − 𝑐𝑐 �𝑨𝑨𝑻𝑻 −𝟏𝟏𝑐𝑐𝒒𝒒 = 𝑯𝑯−𝟏𝟏𝑐𝑐𝒒𝒒

 Use “block elimination” idea
 If we can invert a submatrix of H easily, then we can 

invert H easily as well!
 But, the original adjacency matrix is not block 

elimination-friendly
 Reorder the graph to easily invert a submatrix!
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Preprocessing Phase

hubs
hubs

spokes

1. Reordering 2. Partitioning

3. Schur
Complement

4. Inverting
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Aside: Graph Reordering



U Kang (SNU) 33

SlashBurn: Graph Compression and 
Mining beyond Caveman Communities

(ICDM 2011, TKDE 2014)

Yongsub Lim
(SNU)

U Kang
(SNU)

Christos Faloutsos
(CMU)
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Node Order Matters

 A graph and the adjacency matrix
42

12

10 8

6 11
31

9 7

5
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Node Order Matters

 Same graphs with different orderings
12

3

4 5

6 7

1112

8 9

10
42

12

10 8

6 11
31

9 7

5
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Good ordering = Good compression

 Same graphs with different orderings
12

3

4 5

6 7

1112

8 9

10
42

12

10 8

6 11
31

9 7

5

Many
sparse
blocks

Few
dense
blocks
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Problem Definition

 Given a graph, how can we lay-out its edges so 
that nonzero elements are well-clustered?

 Better clustering = better compression

Many
sparse
blocks

Few
dense
blocks
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Main Result

Original SlashBurn
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Slash-Burn method

 ‘Slash’ the top k hubs, and ‘burn’ the edges
 Move k hubs to the front of the row/column,

non-GCC to the back of the row/column
 Continue on the remaining GCC
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Slash-Burn method

 ‘Slash’ the top k hubs, and ‘burn’ the edges
 Move k hubs to the front of the row/column,

non-GCC to the back of the row/column
 Continue on the remaining GCC
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Spyplots
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End of Aside
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Preprocessing Phase

hubs
hubs

spokes

1. Reordering 2. Partitioning

3. Schur
Complement

4. Inverting
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Preprocessing Phase: Output

 Precomputed matrices are small or composed of 
small diagonal blocks

 Require little storage



U Kang (SNU) 45

Query Phase

 Given query vector 𝒒𝒒, compute RWR score vector 
𝒓𝒓 using the precomputed matrices

 Theorem (Block Elimination): This equation 
exactly computes RWR scores
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BEAR-Approx

 Remove small entries in precomputed matrices
 Fast and space-efficient but allows small error
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Experimental Settings

 Machine: single PC with with a 4-core CPU and 
16GB memory 

 Datasets: large-scale real-world network data
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Competitors

 Exact methods
 Inversion
 Iterative method
 LU decomp. (Fujiwara et al., 2012)
 QR decomp. (Fujiwara et al., 2012)

 Approximate methods
 BLIN, NB_LIN (Tong et al., 2008)
 RPPR, BRPPR (Gleich et al., 2006)
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Q1. Space Efficiency

 Q1. How much memory space does BEAR-Exact
require for their precomputed matrices?

Space for preprocessed 
data

Up to 22x less 
memory space 
than competitors
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Q2. Preprocessing Time

 How long does the preprocessing phase of 
BEAR-Exact take?

Preprocessing time of exact 
methods

Up to 12x less 
preprocessing 
time than other 
methods
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Q3. Query Time

 How long does the query phase of BEAR-Exact
take?

Up to 300x less 
query time than 
Iterative method

Up to 8x less query 
time than LU 
decomp.

Query time of exact methods
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Q4. Speed vs Accuracy

 Does BEAR-Approx provide a better trade-off 
between speed and accuracy than other methods?

Query speed v.s. Accuracy on the Routing 
dataset
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Q5. Space vs Accuracy

 Does BEAR-Approx provide a better trade-off 
between space and accuracy than other methods?

Space for preprocessed data v.s. Accuracy on the Routing dataset
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Conclusion: BEAR

 BEAR (Block Elimination Approach for RWR)
 partitions the adjacency matrix into small submatrices 

using the hub-and-spoke structure of real-world 
graphs

 computes RWR scores accurately from the 
submatrices using block elimination

 BEAR-Exact
 up to 22× less space, 12× less preprocessing  time, 

and 8× less query time than other exact methods
 BEAR-Approx

 better trade-off between time, space, and accuracy 
than other approximate methods

http://datalab.snu.ac.kr/bear
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BePI: Fast and Memory-Efficient 
Method for Billion-Scale Random 

Walk with Restart
(SIGMOD 2017)

http://datalab.snu.ac.kr/bepi
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Proposed Method

 BePI (Best of Preprocessing and Iterative approaches)
 A fast and scalable method by taking the advantages of both 

preprocessing and iterative methods
 Key Ideas

 Idea 1) Exploit graph characteristics to adopt a 
preprocessing approach for fast query speed

 Idea 2) Incorporate an iterative method into the 
preprocessing approach to increase the scalability

 Idea 3) Optimize the performance of the iterative 
method to accelerate RWR computation speed
 (Omitted for brevity; see the paper)
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Proposed Method – Idea 1

 Combine deadend and hub & spoke reordering

Deadend Hub & Spoke
on 𝐇𝐇nn

𝐇𝐇𝐫𝐫 = 𝑐𝑐𝐪𝐪s ⇔
𝐇𝐇11 𝐇𝐇12 𝟎𝟎
𝐇𝐇21 𝐇𝐇22 𝟎𝟎
𝐇𝐇31 𝐇𝐇32 𝐈𝐈

𝐫𝐫1
𝐫𝐫2
𝐫𝐫3

= 𝑐𝑐
𝐪𝐪1
𝐪𝐪2
𝐪𝐪3

𝐇𝐇11 is a block diagonal matrix!
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Proposed Method – Idea 2

 Incorporate an iterative method into the 
preprocessing approach
 Computing 𝑯𝑯𝟏𝟏𝟏𝟏

−𝟏𝟏 is trivial since it is block diagonal
 But, inverting 𝑺𝑺 is impractical in very large graphs 

 dim(𝑺𝑺) = # of hubs > 1 million (106) in large graphs
 e.g., 10 million hubs in the Twitter network

𝐫𝐫1
𝐫𝐫2
𝐫𝐫3

=
𝐇𝐇11−1(𝑐𝑐𝐪𝐪1 − 𝐇𝐇12𝐫𝐫2)

𝐒𝐒−𝟏𝟏(𝑐𝑐𝐪𝐪2 − 𝑐𝑐𝐇𝐇21𝐇𝐇11−1𝐪𝐪1)
𝑐𝑐𝐪𝐪3 − 𝐇𝐇31𝐫𝐫1 − 𝐇𝐇32𝐫𝐫2

𝐒𝐒 = 𝐇𝐇22 − 𝐇𝐇21𝐇𝐇11−1𝐇𝐇12
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Proposed Method – Idea 2

 Incorporate an iterative method into the 
preprocessing approach
 Solution. Solve the linear system on 𝐒𝐒 using an 

iterative linear solver such as GMRES [Saad et al., `86]
𝐫𝐫2 = 𝐒𝐒−𝟏𝟏 𝑐𝑐𝐪𝐪2 − 𝑐𝑐𝐇𝐇21𝐇𝐇11−1𝐪𝐪1

⇔ 𝐒𝐒𝐫𝐫2 = 𝑐𝑐𝐪𝐪2 − 𝑐𝑐𝐇𝐇21𝐇𝐇11−1𝐪𝐪1 ≜ �𝐪𝐪2

 Linear solvers obtain the accurate 𝒓𝒓2 without inverting 𝐒𝐒

𝐒𝐒𝐫𝐫2 = �𝐪𝐪2

Introducing the linear solver increases the scalability of RWR computation!
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Experimental Questions

 Q1. (Space) How much memory space does BePI
requires for their preprocessed results?

 Q2. (Prep. Time) How long does the 
preprocessing phase of BePI take?

 Q3. (Query Time) How quickly does BePI
respond to an RWR query?

 Q4. (Scalability) How well does BePI scale up?
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Q1. Space Efficiency

 How much memory space does BePI requires for 
their preprocessed results?

BePI is up to 𝟏𝟏𝟏𝟏𝟎𝟎 × less 
memory space than 
other preprocessing 
methods!
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Q2. Preprocessing Time

 How long does the preprocessing phase of BePI
take?

BePI is significantly 
faster than other 
methods in terms of 
preprocessing time!
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Q3. Query Time

 How quickly does BePI respond to an RWR 
query?

BePI is up to 9× faster 
than other competitors in 
terms of query speed!
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Q4. Scalability of BePI

 How well does BePI scale up?
 Processes 𝟏𝟏𝟎𝟎𝟎𝟎 × larger graphs than other preprocessing 

methods
 Shows the fastest RWR computation speed among others
 Provides near linear scalability in terms of time and memory 

usage

BePI shows the best performance in terms of scalability and running time!
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Conclusion: BePI

 BePI (Best of Preprocessing and Iterative approaches)
 Idea 1) Exploit graph characteristics for a prep. method
 Idea 2) Incorporate an iterative method into the prep. method
 Idea 3) Optimize the performance of the iterative method

 Main Results
 Fast and scalable computation for RWR on billion-scale 

graphs
 Requires 130× less memory space & processes 𝟏𝟏𝟎𝟎𝟎𝟎 × larger 

graphs than other preprocessing methods
 Computes RWR scores 𝟗𝟗 × faster than other existing 

methods

http://datalab.snu.ac.kr/bepi
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Outline

Random Walk with Restart (RWR)
Fast Exact RWR
Fast Approximate RWR
Conclusions
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Overview

 I will describe two state-of-the-art approximate 
RWR algorithms
 Static method TPA (to appear at ICDE 2018)
 Dynamic method OSP (to appear at WWW 2018)
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TPA: Fast, Scalable, and Accurate 
Method for Approximate Random Walk 

with Restart on Billion Scale Graphs
(ICDE 2018)

http://datalab.snu.ac.kr/tpa
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Problem Definition

 How can we approximately compute RWR 
quickly, with little loss of accuracy?
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CPI: Cumulative Power Iteration
 Exact RWR computation method
 Re-interpretation of RWR 
 Propagation of scores across a graph

1) Score c is generated from the seed node
2) At each step, scores are divided evenly into out-edges 

with decaying coefficient (1 − 𝑐𝑐)
3) Each node accumulates scores they have received
4) Accumulated scores become RWR score of each node
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CPI: Cumulative Power Iteration

 𝐱𝐱(𝑖𝑖) ∈ ℝ𝑛𝑛×1: interim score vector computed from 𝑖𝑖 th iteration
 Correctness of CPI: Theorem 1

 For PageRank computation, the seed vector 𝐪𝐪 is set to 1
𝑛𝑛
𝟏𝟏

1) Initial score c at seed node

2) scores are 
divided evenly 
into out-edges 
with (1-c)3) CPI accumulate interim scores 

of each node to get final results
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TPA: Two Phase Approximation
 TPA approximates RWR scores with fast speed and 

high accuracy
 CPI performs iterations until convergence 
 Divide the whole iterations in CPI into three parts as 

follows :

𝑆𝑆 : starting iteration of 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 𝑇𝑇 : starting iteration of 𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
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TPA: Two Phase Approximation

 1st Phase: Stranger Approximation 
 Approximates 𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in RWR using PageRank  

 2nd Phase: Neighbor Approximation 
 Approximates 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 using 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓



U Kang (SNU) 74

Stranger Approximation - Definition

 PageRank score vector 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶 is represented by 
CPI as follows:

 𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in RWR is approximated by 𝑝𝑝𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
in PageRank as follows: 
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Stranger Approximation - Intuition

 The amount of scores propagated into each node 
1. # of in-edges 
 Nodes with many in-edges have many sources to 

receive scores
2. Distance from seed node
 Scores are decayed by factor (1−c) as iteration 

progresses
 Nodes close to the seed node take in high scores 
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Stranger Approximation - Intuition
 In stranger iterations
 Scores (𝑥𝑥 𝑇𝑇 , 𝑥𝑥(𝑇𝑇 + 1), ··· ) are mainly determined by 

# in-edges 
 Nodes are already far from seed

 PageRank is solely determined by arrangement of 
edges (= # in-edges) !!
 Motivation of Stranger Approximation
 Estimate stranger iterations in RWR with those in 

PageRank
 Precompute �̃�𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in preprocessing phase
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TPA: Two Phase Approximation

 1st Phase: Stranger Approximation 
 Approximates 𝑟𝑟𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in RWR using PageRank  

 2nd Phase: Neighbor Approximation 
 Approximates 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 using 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓
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Neighbor Approximation - Definition
 The neighbor approximation 
 Limit computation to 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓

 Estimate 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 by scaling 𝑟𝑟𝑓𝑓𝑠𝑠𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓 as follows: 
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Neighbor Approximation - Intuition

Block-wise, 
Community-like 
structure
of real-world graphs[1]

[1] U. Kang and C. Faloutsos. Beyond ‘caveman communities’: Hubs and spokes for 
graph compression and mining. In ICDM, 2011 
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Neighbor Approximation - Intuition

 Nodes which receive scores in the early iterations 
(family part) 
 Would receive scores again in the following iterations 

(neighbor part) 
 Nodes which have more in-edges thus receive 

more scores in the early iterations 
 Would receive more scores than other nodes in the 

following iterations. 



U Kang (SNU) 81

TPA: Two Phase Approximation
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Experimental Questions

 Q1. Performance
 How much does TPA enhance the computational efficiency 

compared with its competitors? 
 Q2. Accuracy

 How much does TPA sacrifice accuracy? 
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How long does TPA take for its preprocessing phase and online 
phase, respectively?

(a) Preprocessing Time (b) Online Time

Q1: Performance of TPA- Speed

TPA takes smaller running time in both preprocessing and online phases 
(up to 30x)
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How much memory space does TPA requires for preprocessed 
results?

Q1: Performance of TPA- Memory

TPA requires up to 40x smaller memory space than competitors
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How much does TPA sacrify its accuracy?

Q2: Accuracy of TPA

TPA provides the best accuracy among competitors!
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Conclusion: TPA
 TPA (Two Phase Approximation)

 Neighbor Approximation 
 block-wise structure of real-world graphs 

 Stranger Approximation 
 PageRank

 Main Results
 Requires 40x memory space & preprocesses 3.5x time than 

other preprocessing methods
 Computes RWR scores 30x faster than other existing methods 

in online phase
 Maintaining high accuracy

http://datalab.snu.ac.kr/tpa
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Fast and Accurate Random Walk with 
Restart on Dynamic Graphs with 

Guarantees
(WWW 2018)

http://datalab.snu.ac.kr/osp
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Problem Definition

 How can we approximately compute RWR 
quickly, for dynamic graphs?
 Dynamic graphs: nodes/edges are added/removed 

continuously
 We want to update RWR scores quickly, without 

computing it from scratch for graph update
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Score Propagation on dynamic graph

DELETE (∆G)
More scores would be 
propagated from A
:  1
3
XA => 1

2
XA

A B
score xA

 RWR scores of nodes are determined by arrangement 
of edges
1. When the graph G is updated with ∆G
2. Propagation of scores around ∆G is changed 
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3. These small changes are propagated
4. Affect previous propagation pattern across whole 

graph
5. Finally lead to 𝐫𝐫new different from 𝐫𝐫old

DELETE (∆G)

A B

Score Propagation on dynamic graph
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OSP: Offset Score Propagation

1. Calculate an offset seed vector 𝐪𝐪𝒐𝒐𝒐𝒐𝒐𝒐𝒔𝒔𝒐𝒐𝒐𝒐
2. Propagate the offset scores across G+∆G to get an off

set score vector 𝐫𝐫𝒐𝒐𝒐𝒐𝒐𝒐𝒔𝒔𝒐𝒐𝒐𝒐
3. Finally, OSP adds up 𝐫𝐫old and 𝐫𝐫offset to get 𝒓𝒓𝒏𝒏𝒐𝒐𝒏𝒏
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OSP-T: OSP with Trade-off

 Approximate method for dynamic RWR 
 Use the same algorithm with OSP 
 Regulates accuracy and speed using higher 

error tolerance parameter ε
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Experimental Questions

 Q1. (Performance of OSP)
 How much does OSP improve performance for dynamic RWR 

computation from baseline static method CPI? 
 Q2. (Performance of OSP-T)

 How much does OSP-T enhance computation efficiency, 
accuracy compared with its competitors? 
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Q1. Performance of OSP
 How much does OSP improve performance for 

dynamic RWR computation from baseline static 
method CPI? 

 Running time for tracking RWR exactly on a 
dynamic graph G varying the size of ∆G
 Initial graph G with all its edges 
 Modify G by deleting edges.

 1 edges to 105 edges
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Q1. Performance of OSP
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Q2. Performance of OSP-T
 How much does OSP-T enhance computation 

efficiency, accuracy compared with its competitors? 
 Experimental setting
 Generate a uniformly random edge stream and divide the 

stream into two parts
 Extract 10 snapshots from the second part
 Initialize a graph with the first part of the stream
 Update the graph for each new snapshot arrival
 At the end of the updates, compare each algorithm. 
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Q2. Performance of OSP-T
 Trade-off between accuracy and running time
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Conclusion: OSP
 OSP (Offset Score Propagation)

1. Calculate offset scores around the modified edges
2. Propagate the offset scores across the updated graph
3. Merge them with previous RWR scores to get updated RWR 

scores 
 Main Results

 Exactness of OSP 
 Error bound and time complexity of OSP-T 
 Faster and more accurate RWR computation than other methods 

on Dynamic graphs

http://datalab.snu.ac.kr/osp
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Outline

Random Walk with Restart (RWR)
Fast Exact RWR
Fast Approximate RWR
Conclusions
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Conclusions

 RWR for ranking in graphs: important problem 
with many real world applications
 Web search, friend recommendation, product (e.g. TV 

program) recommendation, …
 BePI: state-of-the-art method for exact RWR
 Linear algebra + Graph theory + Real World Graph Analysis

 TPA and OSP: state-of-the-art methods for 
approximate RWR
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Thank you !
http://datalab.snu.ac.kr
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