
엣지 컴퓨팅 환경에서
강화학습을 이용한 디바이스 제어

April 2019

Youn-Hee Han
yhhan@koreatech.ac.kr

http://link.koreatech.ac.kr

http://link.koreatech.ac.kr/

Rotary Inverted Pendulum

2

Rotary Inverted Pendulum (RIP)

– a nonlinear dynamical system

– a pendulum mounted on an arm end

– one motor & an arm rotating in the horizontal plane

– 2 joints 2-DoF (Degree of Freedom)

대표적인 비선형 제어 시스템 기계 제어 이론을 접목하기 적합한 플랫폼

https://www.quanser.com/products/qube-servo-2/

https://www.quanser.com/products/qube-servo-2/

Classical Control Engineering

RIP Controlled by Control Model in Matlab/Simulink

– System Modeling, Dynamic Equation, and Control Algorithm
[1995~2010]
• https://kr.mathworks.com/videos/physical-modeling-building-a-rotary-

pendulum-118779.html

• http://www.seas.upenn.edu/~jiyuehe/rotary-inverted-
pendulum/SystemModeling.html

https://kr.mathworks.com/videos/physical-modeling-building-a-rotary-pendulum-118779.html
http://www.seas.upenn.edu/~jiyuehe/rotary-inverted-pendulum/SystemModeling.html

RIP Controlled by Remote Model

RIP Controlled in an OpenFlow Network [2014 ~ Current]

– Controller located remotely from the real pendulum system

– MIDAS (MIDdleware Assurance Substrate)
• https://repository.upenn.edu/cgi/viewcontent.cgi?article=1821&context=cis_

papers

4

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1821&context=cis_papers

Deep Reinforcement Learning

Deep Reinforcement Learning

– Deepmind’s
Atari Breakout
with DQN (2015)
• https://www.youtube.com/watch?v=V1eYniJ0Rnk 5

심층 강화 학습(Deep Reinforcement learning)은 임의의 환경
안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한
행동들 중 보상을 최대화하는 행동 혹은 행동 순서를 선택하기
위하여 딥러닝 모델을 활용하는 방법

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Deep Reinforcement Learning for Device Control

6

Pieter Abbeel et al. “An Application of
Reinforcement Learning to Aerobatic
Helicopter Flight” Advances in Neural

Information Processing Systems
Conference, 2006.

Stanford Autonomous Helicopter

Reinforcement Learning at Edge or Cloud

7

University of Texas

- Control at cloud has inherent challenge in real-time situation due to
latency caused by congestion

- Control at edge can provide the stability of the dynamic system against
the network fluctuations

EdgeX

8

The Open Interop Platform for the IoT Edge

https://www.edgexfoundry.org/

Vision: Create a common interoperability framework that enables an ecosystem
of plug-and-play “EdgeX certified” components.

Our Target System

Three Outstanding Features

– 1. Deep RL-based Control

• Model-Free Approach DQN (Deep Q-Network)

– 2. Edge-Cotrolled
• EdgeX Open Platform

– 3. Networked Remote Control
• SDN-based Switched Network

An Edge-Controlled Rotary Inverted Pendulum System

using Deep Reinforcement Learning in an OpenFlow Network

SDN
Controller
(Cloud)

EdgeX/
AI Engine

(DQN)

9

Deep Reinforcement Learning for RIP Control

10

RIP Dynamic System Control

Classical Control Model
based on PID and LQR

Model-free
Deep Q-Network

DQN

RIP System – QUANSER QUBE Servo2

11

https://www.quanser.com/products/qube-servo-2/

- Motor Angle
- Motor Angular Velocity

- Pendulum Angle
- Pendulum Velocity

- Motor Voltage

- DAQ (Data Acquisition)
- PWM (Pulse Width Modulation
- SPI (Serial Peripheral Interface)

SPI

Proposed Distributed System
in OpenFlow Network

SDN Controller
- ONOS

Motor
Angle/Speed
&
Pendulum
Angle/Speed

Motor Angle/Speed &
Pendulum Angle/Speed

Motor Voltage

[EdgeX/RL/MQTT Broker]
- IP address = 10.0.0.1
- EdgeX Platform
- Deep RL (TensorFlow/Keras)
 Deep Q-Learning

QUBE Servo2

Bogus Traffic
Generator

Bogus Traffic

[OpenFlow Switch]
- OpenVSwitch (OVS)

12

Motor Voltage

SPI

Bogus
Traffic

[Raspberry Pi]
- IP address = 10.0.0.2

Flow Rule Modification
(FLOW_MOD_PACKET)

RL Environment: Cyber-Physical System (CPS)

13

reset()
step(action)

Physical Env.

Edge Controller

Agent
(DQN)

QUBE Servo2

SPI

Raspberry Pi

MQTT Broker

‘state_info’ topic

‘motor_volt’ topic

Cyber Env.

Environment

Overall Control Flow

14

Episode Start

Pendulum Suspension

Swing Up

BALANCE CONTROL

Done

reset()

step(action)

Model Parameter
Update

State, Reward

Initial state

SPI

motor voltage
(voltage=0)

Pendulum Suspension & Swing-Up Control @
Raspberry Pi

MQTT-TCP/IP
Ethernet

’reset*’

pendulum &
motor

angle/speed

until pendulum
± 15° of upright

‘reset complete*’
with state-info

15
*: MQTT Message

motor voltage

pendulum &
motor

angle/speed

reset()

state

MQTT
Broker

‘suspension*’

’reset*’

‘reset complete*’
with state-info

Env. Agent

‘state-info*’

’reset*’

‘reset complete*’
with state-info

‘suspension*’
‘suspension*’

‘state-info*’
‘state-info*’

Swing-up Control Implemented Heuristically

Suspension

State Management at Environment

State Information from the RIP Environment

16

Motor Angle & Velocity

- 𝜃𝑘2 𝜃𝑘2
′ (=

𝑑𝜃𝑘2

𝑑𝑡
)

Pendulum Angle & Velocity

- 𝜃𝑘1 𝜃𝑘1
′ (=

𝑑𝜃𝑘1

𝑑𝑡
)

단위 상태 정보 (4-elements)

State
Elements

0 𝜃𝑘1

1 𝜃𝑘1
′

2 𝜃𝑘2

3 𝜃𝑘2
′

n-History

4-elements state

0 (𝜃01, 𝜃01
′ , 𝜃02, 𝜃02

′)

1 (𝜃11, 𝜃11
′ , 𝜃12, 𝜃12

′)

⋯

n (𝜃𝑛1, 𝜃𝑛1
′ , 𝜃𝑛2, 𝜃𝑛2

′)

상태 정보 (Time-Series)

강화학습
엔진

(DQN)

State Management at Environment

17

States Information (Time-series)

0.034 6.8 0.087 -0.6

0.028 -1.2 0.083 -0.8

0.024 -0.8 0.092 1.8

0.024 0.0 0.091 -0.2

0.021 -0.6 0.089 -0.4

0.014 -1.4 0.076 -2.6

0.014 0.0 0.078 0.4

0.012 -0.4 0.082 0.8

0.012 0.0 0.083 0.2

0.013 0.2 0.083 0.0

Pendulum
Angle

(radian)

n=10

m=4
Pendulum Angular
Velocity (radian/ms)

Dimension & Shape of a State Data: (n, m, 1) (10, 4, 1)

Motor Angular
Velocity (radian/ms)

Motor
Angle

(radian)

7msec.

CNN based Deep Q-Network

 CNN (Convolutional Neural Network)

18

Input
10 x 4 x 1

- 32 Filters
- Filter Shape: (4, 4)

Output
Shape:
(7, 1, 32)

Conv Layer 1 Conv Layer 2

- 64 Filters
- Filter Shape: (4, 1)

Output
Shape:
(4, 1, 64)

Dense 1 Dense 2

⋮

⋮

Flatten
(256)

Dense1
(128)

Dense2
(3)

RL Actions

Three Motor Power Indices

19

Action Selection
(One of Three Motor Power Indices)

Motor Voltage

“Power Index to Voltage Conversion”

Motor Power Index

-60 0 60

강화학습
엔진

(DQN)

60

Reward & Score

Reward (every step)

– 정상적인 Step 수행한 경우: +1

– Step 수행이 Fail인 경우: -100

• 1) Pendulum is out of ± 7.5° of upright

• 2) Motor is out of ± 90° of inside

Score (every episode)

– 임의의 에피소드 내에서 각 스텝별 Reward의 합

Score Graph

20

Deep Q-Learning

Episode

– Sequence of states, actions and rewards

Q-Function

– 행동 가치 함수 (Action Value Function)

– 임의의 상태에서 어떤 행동이 얼마나 좋은지 알려주는
함수

21

Q-function Approximation Q-Network

22

x1

x2

x3

x4

z3

z2

z1ഥ𝑦1

ഥ𝑦2

ഥ𝑦3

State 𝑠

𝐿𝑜𝑠𝑠 = (𝑁𝑁(𝑠) − 𝑦)2

𝑦 = 𝑄 𝑠

≈ 𝑟 + 𝛾max
𝑎

𝑄(𝑠′, 𝑎|𝜃)

𝑁𝑁(𝑠)

𝑁𝑁(𝑠) ≈ 𝑄(𝑠)

𝑄

Deep Q-learning with CNN

DQN Algorithm

23

Action

Reward

Next state

Reward

Next state

Random
minibatch

Q-value

D

Imitational RL (모방 강화 학습)

Learning Acceleration
– with help of classical PID control model

– Fill up a large number (20,000) of good transitions into the
replay memory

24

Action

Reward

Next state

Random
minibatch

D
PID

Controller

PID (Proportional-Integral-Differential)

SPI

Balance Control via Imitation Learning
MQTT-TCP/IP

Ethernet

‘state-info*’

25
*: MQTT Message

motor voltage

pendulum &
motor

angle/speed

step(action)

state

MQTT
Broker

'motor_volt*’

(power = x)

Env. Agent

'motor_volt*’

(power = x)
'motor_volt*’

(power = x)

‘state-info*’
‘state-info*’

until
replay

memory
20,000

action
from

PID model

PID
model

Loop Period = 5msec.

SPI

Balance Control via Deep RL
MQTT-TCP/IP

Ethernet

‘state-info*’

26
*: MQTT Message

motor voltage

pendulum &
motor

angle/speed

step(action)

state

MQTT
Broker

'motor_power*’

(power = x)

Env. Agent

'motor_power*’

(power = x)
'motor_power*’

(power = x)

‘state-info*’
‘state-info*’

action
from

Deep QN

is_done
=False

is_done=True“is_done=True condition”
[FAIL-done] 1) Pendulum is out of ±7.5° of upright

2) Motor is out of ±90° of inside
[SUCCESS-done] Continuously 10,000 steps are executed

Learning
(Parameter

Optimization)

Loop
Period

= 5msec.

Deep
Q-Learning

(CNN)

Experimental Results

Episodic Scores & Losses

– Success-done condition (continuous 5.000 steps within an
episode) repeats 20 times.

Episodic Score & Losses (with imitation learning)

27

Learning Progress

28

https://www.youtube.com/watch?v=vHd7vtadwdc&t=3s

https://www.youtube.com/watch?v=vHd7vtadwdc&t=3s

Control/Feedback on EdgeX platform

Command via EdgeX (device-mqtt microservice)

29

‘motor_volt’‘motor_volt’

Env.
Agent
(DQN)

Control/Feedback on EdgeX platform

Response via EdgeX (device-mqtt microservice)

30

Env.
Agent
(DQN)

‘state_info’
‘state_info’

Control/Feedback RTT Time 1.1 ~ 1.2 seconds It’s too long!!!

SPI

Device Monitoring via
device-mqtt microservice in EdgeX Platform

MQTT-TCP/IP
Ethernet

pendulum & motor
angle/speed

31

*: MQTT Message

State Request

state

MQTT
Broker

EdgeX
Graph

Generator

‘state-info*’ ‘state-info*’
‘state-info*’

Repeat

device-mqtt
microservice

 Normal Traffic for Rotary Inverted Pendulum

– Flow #1 (MQTT/TCP): EdgeX/DQN/MQTT Broker RASPI/QUBE Servo2

• Payload - Motor Power Setting Values

– Flow #2 (MQTT/TCP): RASPI/QUBE Servo2 EdgeX/DQN/MQTT Broker

• Payload - Motor/Pendulum Angle and Speed Values
32

[SDN Controller]
- ONOS

Flow #1: Motor
Power Setting Data

[EdgeX/DQN/MQTT Broker]
- IP address = 10.0.0.1
- MQTT Broker Port = 1833

[Open vSwitch (OVS)]

[Raspberry Pi]
- IP address = 10.0.0.2 Flow #2: Motor &

Pendulum Angle/Speed

Line Speed: 100 Mbps

Line Speed: 1 Gbps

[QUBE Servo2]

Remote RL - Network Traffic Flow

 Bogus Traffic

– Flow #3 (iPerf/UDP): Bogus Traffic Generator RASPI/QUBE Servo2

• Payload - Arbitrary Data

• Packet Generation: Transfer Bandwidth - 95Mbps (Total Packet Size: 0.95GBits)
33

[SDN Controller]
- ONOS

Flow #1: Motor
Power Setting Data

[EdgeX/DQN/MQTT Broker]
- IP address = 10.0.0.1
- MQTT Broker Port = 1833

[Raspberry Pi]
- IP address = 10.0.0.2 Flow #2: Motor &

Pendulum Angle/Speed

Line Speed: 100 Mbps

Line Speed: 1 Gbps

[QUBE Servo2]

Bogus Network Traffic Flow

[Bogus Traffic Generator]
- IP address = 10.0.0.3

Flow #3: Bogus Traffic

Line Speed: 1 Gbps

[Open vSwitch (OVS)]

 Bogus Traffic Blocking
– SDN Controller blocks the port on bogus traffic generator of OVS-switch

34

[SDN Controller]
- ONOS

Flow #1: Motor
Power Setting Data

[EdgeX/DQN/MQTT Broker]
- IP address = 10.0.0.1
- MQTT Broker Port = 1833

[Raspberry Pi]
- IP address = 10.0.0.2 Flow #2: Motor &

Pendulum Angle/Speed

Line Speed: 100 Mbps

Line Speed: 1 Gbps

[QUBE Servo2]

SDN Control Message

[Bogus Traffic Generator]
- IP address = 10.0.0.3

Flow #3: Bogus Traffic

Line Speed: 1 Gbps

Flow Rule Modification
(FLOW_MOD_PACKET)

Configuration Info
Flow #1 priority: 5000
Flow #2 priority: 5000
Flow #3 Remove

[Open vSwitch (OVS)]

 Use “Wireshark”
– Traffic monitoring at the “edgex_enp2s0” port in the OVS-switch

4

Network Traffic Monitoring

[SDN Controller]
- ONOS

Flow #1: Motor
Power Setting Data

[EdgeX/RL/MQTT Broker]
- IP address = 10.0.0.1
- MQTT Broker Port = 1833

[Raspberry Pi]
- IP address = 10.0.0.2 Flow #2: Motor &

Pendulum Angle/Speed

Line Speed: 100 Mbps

Line Speed: 1 Gbps

[QUBE Servo2]

[Bogus Traffic Generator]
- IP address = 10.0.0.3

Flow #3: Bogus Traffic

Line Speed: 1 Gbps

Flow Rule Modification
(FLOW_MOD_PACKET)

Configuration Info
Flow #1 priority: 5000
Flow #2 priority: 5000
Flow #3 Remove

[Open vSwitch (OVS)]

 Throughput Changes for Each (Data) Flow

36

Flow Direction Protocols

Condition

Normal
Bogus Traffic
Generated

Bogus Traffic
Blocked

#1
RL/MQTT Broker

RASPI/Serve-2
MQTT/TCP 146Kbps 22Kbps 135Kbps

#2
RASPI/Serve-2

RL/MQTT Broker
MQTT/TCP 419Kbps 6.8Kbps 392Kbps

#3
Bogus

RASPI/Serve-2
iPerf/UDP - 95Mbps -

Network Traffic Monitoring

Digital Twinning & Model Transfer

Model Transfer: Digital Twin System Real System
– http://cps.ics.uci.edu/research/rotary-inverted-pendulum-example/

37

The rotary inverted pendulum control example is a case study to

demonstrate model-based design of cyber-physical systems.

Simulation Model based on
Simulink and OpenModelica

The Real System using
the Batan S1213 R/C Servo and

EKC-LM3S6965 TI ARM Cortex-M3

http://cps.ics.uci.edu/research/rotary-inverted-pendulum-example/

Digital Twinning & Model Transfer

Model Transfer: Digital Twin System Real System

– Unity3D ML-Agents Toolkit

• https://www.youtube.com/watch?v=Hg3nmYD3DjQ
38

https://www.youtube.com/watch?v=Hg3nmYD3DjQ

Model Transfer: Digital Twin System Real System

– Unity3D ML-Agents Toolkit

39

Digital Twinning & Model Transfer

Digital Twinning & Model Transfer

Model Transfer: Digital Twin System Real System

– AirSim on Unity
• https://github.com/Microsoft/AirSim

• https://github.com/Microsoft/AirSim/tree/master/Unity

• https://www.youtube.com/watch?v=-WfTr1-OBGQ

40

https://github.com/Microsoft/AirSim
https://github.com/Microsoft/AirSim/tree/master/Unity
https://www.youtube.com/watch?v=-WfTr1-OBGQ

Model Transfer: Digital Twin System Real System

– Unity3D ROS

41

Digital Twinning & Model Transfer

Model Transfer: Digital Twin System Real System

– HILS (Hardware in the Loop Simulation)

42

Digital Twinning & Model Transfer

Asynchronous Advantage Actor-Critic (A3C)

43

Distributed A3C with Multiple Devices

44

Comments & Questions

45

