
엣지 컴퓨팅 환경에서
강화학습을 이용한 디바이스 제어

April 2019

Youn-Hee Han
yhhan@koreatech.ac.kr

http://link.koreatech.ac.kr

http://link.koreatech.ac.kr/

Rotary Inverted Pendulum

2

Rotary Inverted Pendulum (RIP)

– a nonlinear dynamical system

– a pendulum mounted on an arm end

– one motor & an arm rotating in the horizontal plane

– 2 joints  2-DoF (Degree of Freedom)

대표적인 비선형 제어 시스템  기계 제어 이론을 접목하기 적합한 플랫폼

https://www.quanser.com/products/qube-servo-2/

https://www.quanser.com/products/qube-servo-2/

Classical Control Engineering

RIP Controlled by Control Model in Matlab/Simulink

– System Modeling, Dynamic Equation, and Control Algorithm
[1995~2010]
• https://kr.mathworks.com/videos/physical-modeling-building-a-rotary-

pendulum-118779.html

• http://www.seas.upenn.edu/~jiyuehe/rotary-inverted-
pendulum/SystemModeling.html

https://kr.mathworks.com/videos/physical-modeling-building-a-rotary-pendulum-118779.html
http://www.seas.upenn.edu/~jiyuehe/rotary-inverted-pendulum/SystemModeling.html

RIP Controlled by Remote Model

RIP Controlled in an OpenFlow Network [2014 ~ Current]

– Controller located remotely from the real pendulum system

– MIDAS (MIDdleware Assurance Substrate)
• https://repository.upenn.edu/cgi/viewcontent.cgi?article=1821&context=cis_

papers

4

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1821&context=cis_papers

Deep Reinforcement Learning

Deep Reinforcement Learning

– Deepmind’s
Atari Breakout
with DQN (2015)
• https://www.youtube.com/watch?v=V1eYniJ0Rnk 5

심층 강화 학습(Deep Reinforcement learning)은 임의의 환경
안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한
행동들 중 보상을 최대화하는 행동 혹은 행동 순서를 선택하기
위하여 딥러닝 모델을 활용하는 방법

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Deep Reinforcement Learning for Device Control

6

Pieter Abbeel et al. “An Application of
Reinforcement Learning to Aerobatic
Helicopter Flight” Advances in Neural

Information Processing Systems
Conference, 2006.

Stanford Autonomous Helicopter

Reinforcement Learning at Edge or Cloud

7

University of Texas

- Control at cloud has inherent challenge in real-time situation due to
latency caused by congestion

- Control at edge can provide the stability of the dynamic system against
the network fluctuations

EdgeX

8

The Open Interop Platform for the IoT Edge

https://www.edgexfoundry.org/

Vision: Create a common interoperability framework that enables an ecosystem
of plug-and-play “EdgeX certified” components.

Our Target System

Three Outstanding Features

– 1. Deep RL-based Control

• Model-Free Approach  DQN (Deep Q-Network)

– 2. Edge-Cotrolled
• EdgeX Open Platform

– 3. Networked Remote Control
• SDN-based Switched Network

An Edge-Controlled Rotary Inverted Pendulum System

using Deep Reinforcement Learning in an OpenFlow Network

SDN
Controller
(Cloud)

EdgeX/
AI Engine

(DQN)

9

Deep Reinforcement Learning for RIP Control

10

RIP Dynamic System Control

Classical Control Model
based on PID and LQR

Model-free
Deep Q-Network

DQN

RIP System – QUANSER QUBE Servo2

11

https://www.quanser.com/products/qube-servo-2/

- Motor Angle
- Motor Angular Velocity

- Pendulum Angle
- Pendulum Velocity

- Motor Voltage

- DAQ (Data Acquisition)
- PWM (Pulse Width Modulation
- SPI (Serial Peripheral Interface)

SPI

Proposed Distributed System
in OpenFlow Network

SDN Controller
- ONOS

Motor
Angle/Speed
&
Pendulum
Angle/Speed

Motor Angle/Speed &
Pendulum Angle/Speed

Motor Voltage

[EdgeX/RL/MQTT Broker]
- IP address = 10.0.0.1
- EdgeX Platform
- Deep RL (TensorFlow/Keras)
 Deep Q-Learning

QUBE Servo2

Bogus Traffic
Generator

Bogus Traffic

[OpenFlow Switch]
- OpenVSwitch (OVS)

12

Motor Voltage

SPI

Bogus
Traffic

[Raspberry Pi]
- IP address = 10.0.0.2

Flow Rule Modification
(FLOW_MOD_PACKET)

RL Environment: Cyber-Physical System (CPS)

13

reset()
step(action)

Physical Env.

Edge Controller

Agent
(DQN)

QUBE Servo2

SPI

Raspberry Pi

MQTT Broker

‘state_info’ topic

‘motor_volt’ topic

Cyber Env.

Environment

Overall Control Flow

14

Episode Start

Pendulum Suspension

Swing Up

BALANCE CONTROL

Done

reset()

step(action)

Model Parameter
Update

State, Reward

Initial state

SPI

motor voltage
(voltage=0)

Pendulum Suspension & Swing-Up Control @
Raspberry Pi

MQTT-TCP/IP
Ethernet

’reset*’

pendulum &
motor

angle/speed

until pendulum
± 15° of upright

‘reset complete*’
with state-info

15
*: MQTT Message

motor voltage

pendulum &
motor

angle/speed

reset()

state

MQTT
Broker

‘suspension*’

’reset*’

‘reset complete*’
with state-info

Env. Agent

‘state-info*’

’reset*’

‘reset complete*’
with state-info

‘suspension*’
‘suspension*’

‘state-info*’
‘state-info*’

Swing-up Control Implemented Heuristically

Suspension

State Management at Environment

State Information from the RIP Environment

16

Motor Angle & Velocity

- 𝜃𝑘2 𝜃𝑘2
′ (=

𝑑𝜃𝑘2

𝑑𝑡
)

Pendulum Angle & Velocity

- 𝜃𝑘1 𝜃𝑘1
′ (=

𝑑𝜃𝑘1

𝑑𝑡
)

단위 상태 정보 (4-elements)

State
Elements

0 𝜃𝑘1

1 𝜃𝑘1
′

2 𝜃𝑘2

3 𝜃𝑘2
′

n-History

4-elements state

0 (𝜃01, 𝜃01
′ , 𝜃02, 𝜃02

′)

1 (𝜃11, 𝜃11
′ , 𝜃12, 𝜃12

′)

⋯

n (𝜃𝑛1, 𝜃𝑛1
′ , 𝜃𝑛2, 𝜃𝑛2

′)

상태 정보 (Time-Series)

강화학습
엔진

(DQN)

State Management at Environment

17

States Information (Time-series)

0.034 6.8 0.087 -0.6

0.028 -1.2 0.083 -0.8

0.024 -0.8 0.092 1.8

0.024 0.0 0.091 -0.2

0.021 -0.6 0.089 -0.4

0.014 -1.4 0.076 -2.6

0.014 0.0 0.078 0.4

0.012 -0.4 0.082 0.8

0.012 0.0 0.083 0.2

0.013 0.2 0.083 0.0

Pendulum
Angle

(radian)

n=10

m=4
Pendulum Angular
Velocity (radian/ms)

Dimension & Shape of a State Data: (n, m, 1)  (10, 4, 1)

Motor Angular
Velocity (radian/ms)

Motor
Angle

(radian)

7msec.

CNN based Deep Q-Network

 CNN (Convolutional Neural Network)

18

Input
10 x 4 x 1

- 32 Filters
- Filter Shape: (4, 4)

Output
Shape:
(7, 1, 32)

Conv Layer 1 Conv Layer 2

- 64 Filters
- Filter Shape: (4, 1)

Output
Shape:
(4, 1, 64)

Dense 1 Dense 2

⋮

⋮

Flatten
(256)

Dense1
(128)

Dense2
(3)

RL Actions

Three Motor Power Indices

19

Action Selection
(One of Three Motor Power Indices)

Motor Voltage

“Power Index to Voltage Conversion”

Motor Power Index

-60 0 60

강화학습
엔진

(DQN)

60

Reward & Score

Reward (every step)

– 정상적인 Step 수행한 경우: +1

– Step 수행이 Fail인 경우: -100

• 1) Pendulum is out of ± 7.5° of upright

• 2) Motor is out of ± 90° of inside

Score (every episode)

– 임의의 에피소드 내에서 각 스텝별 Reward의 합

Score Graph

20

Deep Q-Learning

Episode

– Sequence of states, actions and rewards

Q-Function

– 행동 가치 함수 (Action Value Function)

– 임의의 상태에서 어떤 행동이 얼마나 좋은지 알려주는
함수

21

Q-function Approximation  Q-Network

22

x1

x2

x3

x4

z3

z2

z1ഥ𝑦1

ഥ𝑦2

ഥ𝑦3

State 𝑠

𝐿𝑜𝑠𝑠 = (𝑁𝑁(𝑠) − 𝑦)2

𝑦 = 𝑄 𝑠

≈ 𝑟 + 𝛾max
𝑎

෡𝑄(𝑠′, 𝑎|𝜃)

𝑁𝑁(𝑠)

𝑁𝑁(𝑠) ≈ ෠𝑄(𝑠)

෠𝑄

Deep Q-learning with CNN

DQN Algorithm

23

Action

Reward

Next state

Reward

Next state

Random
minibatch

Q-value

D

Imitational RL (모방 강화 학습)

Learning Acceleration
– with help of classical PID control model

– Fill up a large number (20,000) of good transitions into the
replay memory

24

Action

Reward

Next state

Random
minibatch

D
PID

Controller

PID (Proportional-Integral-Differential)

SPI

Balance Control via Imitation Learning
MQTT-TCP/IP

Ethernet

‘state-info*’

25
*: MQTT Message

motor voltage

pendulum &
motor

angle/speed

step(action)

state

MQTT
Broker

'motor_volt*’

(power = x)

Env. Agent

'motor_volt*’

(power = x)
'motor_volt*’

(power = x)

‘state-info*’
‘state-info*’

until
replay

memory
20,000

action
from

PID model

PID
model

Loop Period = 5msec.

SPI

Balance Control via Deep RL
MQTT-TCP/IP

Ethernet

‘state-info*’

26
*: MQTT Message

motor voltage

pendulum &
motor

angle/speed

step(action)

state

MQTT
Broker

'motor_power*’

(power = x)

Env. Agent

'motor_power*’

(power = x)
'motor_power*’

(power = x)

‘state-info*’
‘state-info*’

action
from

Deep QN

is_done
=False

is_done=True“is_done=True condition”
[FAIL-done] 1) Pendulum is out of ±7.5° of upright

2) Motor is out of ±90° of inside
[SUCCESS-done] Continuously 10,000 steps are executed

Learning
(Parameter

Optimization)

Loop
Period

= 5msec.

Deep
Q-Learning

(CNN)

Experimental Results

Episodic Scores & Losses

– Success-done condition (continuous 5.000 steps within an
episode) repeats 20 times.

Episodic Score & Losses (with imitation learning)

27

Learning Progress

28

https://www.youtube.com/watch?v=vHd7vtadwdc&t=3s

https://www.youtube.com/watch?v=vHd7vtadwdc&t=3s

Control/Feedback on EdgeX platform

Command via EdgeX (device-mqtt microservice)

29

‘motor_volt’‘motor_volt’

Env.
Agent
(DQN)

Control/Feedback on EdgeX platform

Response via EdgeX (device-mqtt microservice)

30

Env.
Agent
(DQN)

‘state_info’
‘state_info’

Control/Feedback RTT Time  1.1 ~ 1.2 seconds It’s too long!!!

SPI

Device Monitoring via
device-mqtt microservice in EdgeX Platform

MQTT-TCP/IP
Ethernet

pendulum & motor
angle/speed

31

*: MQTT Message

State Request

state

MQTT
Broker

EdgeX
Graph

Generator

‘state-info*’ ‘state-info*’
‘state-info*’

Repeat

device-mqtt
microservice

 Normal Traffic for Rotary Inverted Pendulum

– Flow #1 (MQTT/TCP): EdgeX/DQN/MQTT Broker  RASPI/QUBE Servo2

• Payload - Motor Power Setting Values

– Flow #2 (MQTT/TCP): RASPI/QUBE Servo2  EdgeX/DQN/MQTT Broker

• Payload - Motor/Pendulum Angle and Speed Values
32

[SDN Controller]
- ONOS

Flow #1: Motor
Power Setting Data

[EdgeX/DQN/MQTT Broker]
- IP address = 10.0.0.1
- MQTT Broker Port = 1833

[Open vSwitch (OVS)]

[Raspberry Pi]
- IP address = 10.0.0.2 Flow #2: Motor &

Pendulum Angle/Speed

Line Speed: 100 Mbps

Line Speed: 1 Gbps

[QUBE Servo2]

Remote RL - Network Traffic Flow

 Bogus Traffic

– Flow #3 (iPerf/UDP): Bogus Traffic Generator  RASPI/QUBE Servo2

• Payload - Arbitrary Data

• Packet Generation: Transfer Bandwidth - 95Mbps (Total Packet Size: 0.95GBits)
33

[SDN Controller]
- ONOS

Flow #1: Motor
Power Setting Data

[EdgeX/DQN/MQTT Broker]
- IP address = 10.0.0.1
- MQTT Broker Port = 1833

[Raspberry Pi]
- IP address = 10.0.0.2 Flow #2: Motor &

Pendulum Angle/Speed

Line Speed: 100 Mbps

Line Speed: 1 Gbps

[QUBE Servo2]

Bogus Network Traffic Flow

[Bogus Traffic Generator]
- IP address = 10.0.0.3

Flow #3: Bogus Traffic

Line Speed: 1 Gbps

[Open vSwitch (OVS)]

 Bogus Traffic Blocking
– SDN Controller blocks the port on bogus traffic generator of OVS-switch

34

[SDN Controller]
- ONOS

Flow #1: Motor
Power Setting Data

[EdgeX/DQN/MQTT Broker]
- IP address = 10.0.0.1
- MQTT Broker Port = 1833

[Raspberry Pi]
- IP address = 10.0.0.2 Flow #2: Motor &

Pendulum Angle/Speed

Line Speed: 100 Mbps

Line Speed: 1 Gbps

[QUBE Servo2]

SDN Control Message

[Bogus Traffic Generator]
- IP address = 10.0.0.3

Flow #3: Bogus Traffic

Line Speed: 1 Gbps

Flow Rule Modification
(FLOW_MOD_PACKET)

Configuration Info
Flow #1  priority: 5000
Flow #2  priority: 5000
Flow #3  Remove

[Open vSwitch (OVS)]

 Use “Wireshark”
– Traffic monitoring at the “edgex_enp2s0” port in the OVS-switch

4

Network Traffic Monitoring

[SDN Controller]
- ONOS

Flow #1: Motor
Power Setting Data

[EdgeX/RL/MQTT Broker]
- IP address = 10.0.0.1
- MQTT Broker Port = 1833

[Raspberry Pi]
- IP address = 10.0.0.2 Flow #2: Motor &

Pendulum Angle/Speed

Line Speed: 100 Mbps

Line Speed: 1 Gbps

[QUBE Servo2]

[Bogus Traffic Generator]
- IP address = 10.0.0.3

Flow #3: Bogus Traffic

Line Speed: 1 Gbps

Flow Rule Modification
(FLOW_MOD_PACKET)

Configuration Info
Flow #1  priority: 5000
Flow #2  priority: 5000
Flow #3  Remove

[Open vSwitch (OVS)]

 Throughput Changes for Each (Data) Flow

36

Flow Direction Protocols

Condition

Normal
Bogus Traffic
Generated

Bogus Traffic
Blocked

#1
RL/MQTT Broker



RASPI/Serve-2
MQTT/TCP 146Kbps 22Kbps 135Kbps

#2
RASPI/Serve-2



RL/MQTT Broker
MQTT/TCP 419Kbps 6.8Kbps 392Kbps

#3
Bogus


RASPI/Serve-2
iPerf/UDP - 95Mbps -

Network Traffic Monitoring

Digital Twinning & Model Transfer

Model Transfer: Digital Twin System  Real System
– http://cps.ics.uci.edu/research/rotary-inverted-pendulum-example/

37

The rotary inverted pendulum control example is a case study to

demonstrate model-based design of cyber-physical systems.

Simulation Model based on
Simulink and OpenModelica

The Real System using
the Batan S1213 R/C Servo and

EKC-LM3S6965 TI ARM Cortex-M3

http://cps.ics.uci.edu/research/rotary-inverted-pendulum-example/

Digital Twinning & Model Transfer

Model Transfer: Digital Twin System  Real System

– Unity3D ML-Agents Toolkit

• https://www.youtube.com/watch?v=Hg3nmYD3DjQ
38

https://www.youtube.com/watch?v=Hg3nmYD3DjQ

Model Transfer: Digital Twin System  Real System

– Unity3D ML-Agents Toolkit

39

Digital Twinning & Model Transfer

Digital Twinning & Model Transfer

Model Transfer: Digital Twin System  Real System

– AirSim on Unity
• https://github.com/Microsoft/AirSim

• https://github.com/Microsoft/AirSim/tree/master/Unity

• https://www.youtube.com/watch?v=-WfTr1-OBGQ

40

https://github.com/Microsoft/AirSim
https://github.com/Microsoft/AirSim/tree/master/Unity
https://www.youtube.com/watch?v=-WfTr1-OBGQ

Model Transfer: Digital Twin System  Real System

– Unity3D  ROS

41

Digital Twinning & Model Transfer

Model Transfer: Digital Twin System  Real System

– HILS (Hardware in the Loop Simulation)

42

Digital Twinning & Model Transfer

Asynchronous Advantage Actor-Critic (A3C)

43

Distributed A3C with Multiple Devices

44

Comments & Questions

45

